自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 IEEE PHM 2012challenge 竞赛数据解析

关于PHM挑战,考虑了代表3种不同负载的数据(转速和负载力)。参与者被提供了6个运行到故障的数据集,以建立他们的预测模型,并被要求准确估计11个剩余轴承的RUL。-振动信号(水平和垂直)-采样频率:25.6 kHz-记录:每10秒记录2560个样本(即1/10 s)(见图6)-温度信号-采样频率(10 Hz)-记录:IEEE PHM 2012数据挑战每分钟记录600个样本。注3.轴承寿命的现有可靠性定律,如L10,并没有给出与实验获得的结果相同的结果(理论估计寿命与实验给出的寿命不同)。

2023-10-06 20:06:55 2791 3

原创 机器学习专业术语(基本概念)

实际应用中的机器学习在大部分情况下我们都会使用监督式学习。监督式学习指的是你拥有一个输入变量X(x)和一个输出变量Y(y),使用某种算法去学习从输入到输出的映射函数,通过找到这个映射函数,来在新的数据x上进行预测y。当我们拥有大部分的输入数据X(x)但是只有少部分的数据拥有标签Y(y),这种情形称为半监督式学习问题。半监督式学习问题介于监督式和非监督式学习之间。非监督式学习的目标是对数据中潜在的结构和分布建模,以便对数据作更进一步的学习。非监督式学习指的是我们只拥有X(x)但是没有相关的输出变量。

2023-10-05 21:01:27 211 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除