IEEE PHM 2012challenge 竞赛数据解析

挑战数据集

     PHM挑战数据集由FEMTO-ST研究所(法国贝桑松,http://www.FEMTO-ST.fr/)提供。实验在实验室实验平台(PRONOSTIA)上进行,该平台能够在恒定和/或可变操作条件下加速轴承退化,同时收集在线健康监测数据(转速、负载力、温度、振动)。关于PHM挑战,考虑了代表3种不同负载的数据(转速和负载力)。参与者被提供了6个运行到故障的数据集,以建立他们的预测模型,并被要求准确估计11个剩余轴承的RUL。11个测试轴承的监测数据被截断,以便参与者预测剩余寿命,从而进行RUL估计。此外,没有给出关于将要发生的故障类型的假设。

     学习集很小,而所有轴承的寿命范围很广(从1小时到7小时)。因此,表现良好的评估是不可取的,这使得挑战更加令人兴奋。

轴承退化:运行到失效实验

正常和退化的轴承以及来自实验的振动原始信号

关于PHM挑战,考虑了代表3种不同负载的数据:

          -第一种操作条件:1800 rpm和4000 N;

          -第二种操作条件:1650 rpm和4200 N;

         -第三种操作条件:1500 rpm和5000 N。

     

Bearing1-1的数据维度为(2803,2560)

     2803个样本,每个数据样本的信号长度为2560(共有2803个文件,每个文件中2560个数据点)

     如轴承 1_1 从投入使用到报废共采集了 2 803 组数据,其寿 命数值为 0~2 802,则其 actRUL0 为 2 802,由于数 据采样间隔为 10 s 一组,所以轴承 1_1 真实的全寿 命时间为 28 030 s;actRULt 则为 t 时刻轴承的剩余 使用寿命数值。

注1.至于挑战,RUL被定义为加速度计超过20克的时间。

注2.基于频率特征检测轴承故障(如内圈和外圈以及保持架故障)的理论模型不起作用。事实上,由于退化可能同时涉及测试轴承的所有部件,因此很难获得频率特征。

注3.轴承寿命的现有可靠性定律,如L10,并没有给出与实验获得的结果相同的结果(理论估计寿命与实验给出的寿命不同)。

数据采集特性

       学习和测试数据集都在7z压缩文件夹中提供。每个都包含名为acc_xxxxx.csv的振动ASCII 文件和名为temp_xxxxx.csv的温度ASCII文件。数据采集参数如下所示,必须仔细考虑。

      -振动信号(水平和垂直)-采样频率:25.6 kHz-记录:每10秒记录2560个样本(即1/10 s)(见图6)-温度信号-采样频率(10 Hz)-记录:IEEE PHM 2012数据挑战每分钟记录600个样本

ASCII     files

数据的排列如表2所示:

数据排列表
column123456
V.Tμ-second水平垂直

待估计的实际RUL

Acknowledgment

这些数据集正在向公众开放。请使用这些数据库的出版物引用以下论文。

Patrick Nectoux, Rafael Gouriveau, Kamal Medjaher, Emmanuel Ramasso, Brigitte
Morello, Noureddine Zerhouni, Christophe Varnier. PRONOSTIA: An Experimental
Platform for Bearings Accelerated Life Test. IEEE International Conference on
Prognostics and Health Management, Denver, CO, USA, 2012.

### 处理PHM2012轴承数据的方法和技术 #### 使用MATLAB进行信号预处理 为了有效处理PHM2012轴承数据,在开始任何复杂的分析之前,通常先要对原始振动信号执行基本的清理工作。这包括去除噪声、填补缺失值以及标准化输入数值范围等操作[^1]。 ```matlab % 去除高频噪声 cleanedSignal = lowpass(rawData, cutoffFrequency); % 补齐可能存在的空缺时间戳对应的测量值 filledData = fillmissing(cleanedSignal,'linear'); % 将所有样本缩放到相同的尺度上以便后续计算更加稳定可靠 normalizedData = normalize(filledData); ``` #### 提取时域特征 对于经过初步净化后的序列化观测结果而言,可以从多个角度出发挖掘其内在规律性。例如统计均值、方差这类简单描述符之外,还可以关注峰值因子、峭度指标等一系列反映瞬态行为特性的量化参数。 ```matlab meanValue = mean(normalizedData); % 计算平均振幅水平 stdDeviation = std(normalizedData); % 测量波动程度大小 peakFactor = max(abs(normalizedData)) / rms(normalizedData); % 定义波峰比例关系 kurtosisIndex = kurtosis(normalizedData); % 描述分布形态尖锐与否的程度 ``` #### 进行频谱变换获取频率响应特性 除了直接观察随时间变化的趋势外,转换至频域空间同样有助于揭示隐藏于周期成分背后的潜在模式。借助快速傅里叶变换(FFT),可以轻松获得对应离散采样点处的能量集中情况及其所在位置信息。 ```matlab Fs = 2e4; % 设定合适的采样率Hz L = length(normalizedData); % 获取当前向量长度N Y = fftshift(fft(normalizedData)); % 执行中心化的快速傅立叶变换 P2 = abs(Y/L); % 双边幅度谱密度估计 f = Fs*(-L/2:L/2-1)/L; % 构建相应频率轴坐标系 plot(f,P2) % 绘制最终得到的结果图形展示出来 xlabel('Frequency (Hz)') ylabel('|P_{data}(f)|') title('Single-Sided Amplitude Spectrum of Data(t)') grid on; ``` #### 应用高级机器学习算法构建健康状态评估模型 当积累了足够的历史案例资料之后,则可尝试引入诸如支持向量机(SVM)、随机森林(RF)乃至深度神经网络(DNNs)之类的智能化分类器来辅助判断设备运行状况的好坏优劣。这些技术能够自动识别并概括出不同类别间的关键差异之处,从而实现精准诊断的目的。 ```matlab % 利用训练好的SVM模型预测新批次测试件的状态标签 predictedLabels = predict(trainedModel,newFeaturesMatrix); confusionchart(actualLabels,predictedLabels) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值