挑战数据集
PHM挑战数据集由FEMTO-ST研究所(法国贝桑松,http://www.FEMTO-ST.fr/)提供。实验在实验室实验平台(PRONOSTIA)上进行,该平台能够在恒定和/或可变操作条件下加速轴承退化,同时收集在线健康监测数据(转速、负载力、温度、振动)。关于PHM挑战,考虑了代表3种不同负载的数据(转速和负载力)。参与者被提供了6个运行到故障的数据集,以建立他们的预测模型,并被要求准确估计11个剩余轴承的RUL。11个测试轴承的监测数据被截断,以便参与者预测剩余寿命,从而进行RUL估计。此外,没有给出关于将要发生的故障类型的假设。
学习集很小,而所有轴承的寿命范围很广(从1小时到7小时)。因此,表现良好的评估是不可取的,这使得挑战更加令人兴奋。
轴承退化:运行到失效实验
正常和退化的轴承以及来自实验的振动原始信号
关于PHM挑战,考虑了代表3种不同负载的数据:
-第一种操作条件:1800 rpm和4000 N;
-第二种操作条件:1650 rpm和4200 N;
-第三种操作条件:1500 rpm和5000 N。
Bearing1-1的数据维度为(2803,2560)
2803个样本,每个数据样本的信号长度为2560(共有2803个文件,每个文件中2560个数据点)
如轴承 1_1 从投入使用到报废共采集了 2 803 组数据,其寿 命数值为 0~2 802,则其 actRUL0 为 2 802,由于数 据采样间隔为 10 s 一组,所以轴承 1_1 真实的全寿 命时间为 28 030 s;actRULt 则为 t 时刻轴承的剩余 使用寿命数值。
注1.至于挑战,RUL被定义为加速度计超过20克的时间。
注2.基于频率特征检测轴承故障(如内圈和外圈以及保持架故障)的理论模型不起作用。事实上,由于退化可能同时涉及测试轴承的所有部件,因此很难获得频率特征。
注3.轴承寿命的现有可靠性定律,如L10,并没有给出与实验获得的结果相同的结果(理论估计寿命与实验给出的寿命不同)。
数据采集特性
学习和测试数据集都在7z压缩文件夹中提供。每个都包含名为acc_xxxxx.csv的振动ASCII 文件和名为temp_xxxxx.csv的温度ASCII文件。数据采集参数如下所示,必须仔细考虑。
-振动信号(水平和垂直)-采样频率:25.6 kHz-记录:每10秒记录2560个样本(即1/10 s)(见图6)-温度信号-采样频率(10 Hz)-记录:IEEE PHM 2012数据挑战每分钟记录600个样本
ASCII files
数据的排列如表2所示:
column | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
V.T | 时 | 分 | 秒 | μ-second | 水平 | 垂直 |
待估计的实际RUL
Acknowledgment
这些数据集正在向公众开放。请使用这些数据库的出版物引用以下论文。
Patrick Nectoux, Rafael Gouriveau, Kamal Medjaher, Emmanuel Ramasso, Brigitte
Morello, Noureddine Zerhouni, Christophe Varnier. PRONOSTIA: An Experimental
Platform for Bearings Accelerated Life Test. IEEE International Conference on
Prognostics and Health Management, Denver, CO, USA, 2012.