ERA5数据的区别

ERA5 hourly data on single levels from 1940 to present

链接
ERA5是欧洲中期天气预报中心(ECMWF)的第五代全球气候和天气再分析产品,涵盖过去80年的数据。数据可从1940年开始获取,ERA5取代了ERA-Interim再分析产品。

再分析将全球范围内的模型数据与观测数据结合起来,利用物理定律构建一个全球完整且一致的数据集。这一原理称为数据同化,与数值天气预报中心采用的方法相同,每隔几个小时(ECMWF为12小时)将先前的预报与新的观测数据以最优方式结合,生成大气状态的新的最佳估计值,称为分析场,从中发布更新、改进的预报。再分析也是以类似的方式进行,但是分辨率较低,以提供涵盖数十年的数据集。再分析不受发布及时预报的限制,因此有更多时间收集观测数据,而且当向前回溯更久远的时候,可以吸收原始观测数据的改进版本,这有利于提高再分析产品的质量。

ERA5提供了大量大气、海洋波浪和陆地表面量的每小时估计值。每三小时,通过基于10个成员的集合对不确定性进行估计。集合均值和离散度已经预先计算出来,方便使用。这些不确定性估计值与可用观测系统的信息内容密切相关,并且指示了与流动相关的敏感区域。为了方便许多气候应用,月平均值也已经预先计算好,尽管集合均值和离散度不提供月平均值。

ERA5每天更新一次,延迟约5天。如果在此早期版本(称为ERA5T)中发现严重错误,则与最终版本相差2到3个月的数据可能会有所不同。

参数 描述
100m风速的u分量 m s-1 100米高度以上地表的风的东向分量。它是空气向东运动的水平速度,以每秒米为单位。比较模型参数和观测数据时应当谨慎,因为观测数据通常只代表特定时空点的局部情况,而不是模型网格盒的平均值。这个参数可以与北向分量结合以得到水平100米风的速度和方向。
100m风速的v分量 m s-1 100米高度以上地表的风的北向分量。它是空气向北运动的水平速度,以每秒米为单位。比较模型参数和观测数据时应当谨慎,因为观测数据通常只代表特定时空点的局部情况,而不是模型网格盒的平均值。这个参数可以与东向分量结合以得到水平100米风的速度和方向。
10m中性风的u分量 m s-1 "中性风"在地表10米高度的东向分量。中性风是通过假设空气是中性层流状态,从地表应力和相应的粗糙度长度计算得出的。中性风在稳定条件下比实际风要慢,在不稳定条件下则更快。中性风的方向与地表应力一致。粗糙度长度的大小取决于陆地表面性质或海况。
10m风速的u分量 m s-1 10米高度以上地表的风的东向分量。它是空气向东运动的水平速度,以每秒米为单位。比较这个参数与观测数据时应当谨慎,因为风的观测数据变化幅度小、时空尺度小,并受到地形、植被和建筑物的影响,而这些因素在ECMWF综合预报系统中只以平均值表示。这个参数可以与10m风的V分量结合以得到水平10米风的速度和方向。
10m中性风北向分量 m/s 此参数是地表上方10米高度处中性风的北向分量。中性风是通过假设空气呈中性分层状态,通过地表应力和相应粗糙度长度计算得出的。在稳定条件下,中性风速度较慢,在不稳定条件下较快。中性风根据地表应力的方向定义。粗糙度长度的大小取决于陆地表面特性或海况情况。
10m风北向分量 m/s 此参数是10米高度处向北移动的空气的水平速度,单位为米/秒。在比较此参数与观测数据时需要注意,因为风观测数据在小空间和时间尺度上存在变化,并受到当地地形、植被和建筑物的影响,而ECMWF集成预报系统(IFS)中仅以平均值表示。此参数可以与10m风的U分量结合,得到水平10m风的速度和方向。
10m wind gust since previous post-processing10m阵风 m/s 根据WMO定义的10米高度处的最大3秒阵风。参数化仅表示01102008之前的湍流效应;之后包括对流效应。每个时间步长计算3秒阵风,并保留自上次后处理以来的最大值。
2m 露点温度 K 这个参数是空气在地表以上2米处冷却至饱和所需的温度。它是空气湿度的一个度量。结合温度,可以用来计算相对湿度。2m露点温度是通过插值计算得出的,考虑了地表以下最低模型水平和地球表面的大气条件。该参数的单位为开尔文(K)。开尔文中测得的温度可以通过减去273.15转换为摄氏度(°C)。
2m 温度 K 这个参数是陆地、海洋或内陆水域地表以上2米处空气的温度。2m温度是通过插值计算得出的,考虑了地表以下最低模型水平和地球表面的大气条件。该参数的单位为开尔文(K)。开尔文中测得的温度可以通过减去273.15转换为摄氏度(°C)。
海洋上空气密度 kg m-3 这个参数是海洋上空气每立方米的质量,由大气模型最低水平处的温度、比湿和压力推导而来。这个参数是用来驱动波浪模型的参数之一,因此仅在海洋波浪模型中计算。它是从大气模型水平网格插值到海洋波浪模型使用的水平网格上。
亚网格尺度地形的角度 弧度 这个参数是描述地形特征的四个参数之一(其他三个是标准差、坡度和各向异性),这些特征在模型网格无法解析其尺度的情况下。这四个参数是针对水平尺度在5公里和模型网格分辨率之间的地形特征而计算得出的,从大约1公里分辨率的山谷、丘陵和山脉高度中推导得出。它们被用作子网格地形方案的输入,表示低空阻塞和地形引起的重力波效应。亚网格尺度地形的角度表征了地形在水平平面上(从鸟瞰视角)相对于东向轴的地理方向。这个参数在时间上不变。
Surface net solar radiation 地表净太阳辐射是指达到地球表面的太阳辐射(包括直接和散射辐射),减去地球表面反射的太阳辐射量(由反照率决定)。太阳辐射部分被云和大气中的颗粒物(气溶胶)反射回太空,部分被吸收,剩下的辐射照射在地球表面,一部分被反射。这个参数在特定的时间段累积,具体取决于提取的数据。对于再分析数据,累积期为有效日期和时间结束的1小时。对于集合平均和集合扩散数据,累积期为有效日期和时间结束的3小时。单位为每平方米的焦耳(J m-2)。要转换为每平方米的瓦特(W m-2),累积值应该除以以秒为单位的累积期。欧洲中期天气预报中心(ECMWF)的垂直通量约定是向下为正。
Surface net solar radiation, clear sky 无云时的地表净太阳辐射是指在无云(晴朗)条件下,到达地球表面的太阳(短波)辐射减去地球表面反射的太阳辐射的量。它是通过水平面的辐射量。无云辐射量是在完全相同的大气条件下计算的,包括温度、湿度、臭氧、痕量气体和气溶胶,但假设没有云。太阳辐射部分被云和大气中的颗粒物(气溶胶)反射回太空,部分被吸收,其余的辐射照射在地球表面,一部分被反射。下行和反射的太阳辐射之间的差值就是地表净太阳辐射。这个参数在特定的时间段累积,具体取决于提取的数据。对于再分析数据,累积期为有效日期和时间结束的1小时。对于集合平均和集合扩散数据,累积期为有效日期和时间结束的3小时。单位为每平方米的焦耳(J m-2)。要转换为每平方米的瓦特(W m-2),累积值应该除以以秒为单位的累积期。欧洲中期天气预报中心(ECMWF)的垂直通量约定是向下为正。
Total precipitation,m
感热通量和潜热通量是气象学中常用的两个概念,用于描述大气中的能量传输。感热通量是指由温度差引起的热量传输,而潜热通量是指由水汽相变引起的热量传输。 关于感热通量和潜热通量的计算,可以使用下面的代码示例: ```python # 计算感热通量 def calculate_sensible_heat_flux(air_temperature, surface_temperature, wind_speed, air_density, specific_heat_capacity): heat_flux = air_density * specific_heat_capacity * wind_speed * (surface_temperature - air_temperature) return heat_flux # 计算潜热通量 def calculate_latent_heat_flux(air_temperature, surface_temperature, wind_speed, air_density, latent_heat_vaporization): heat_flux = air_density * latent_heat_vaporization * wind_speed * (surface_temperature - air_temperature) return heat_flux # 示例使用 air_temperature = 25.0 # 大气温度(摄氏度) surface_temperature = 30.0 # 地表温度(摄氏度) wind_speed = 5.0 # 风速(m/s) air_density = 1.2 # 大气密度(kg/m³) specific_heat_capacity = 1005.0 # 空气比热容(J/(kg·K)) latent_heat_vaporization = 2.5e6 # 水汽蒸发潜热(J/kg) sensible_heat_flux = calculate_sensible_heat_flux(air_temperature, surface_temperature, wind_speed, air_density, specific_heat_capacity) latent_heat_flux = calculate_latent_heat_flux(air_temperature, surface_temperature, wind_speed, air_density, latent_heat_vaporization) print("感热通量:", sensible_heat_flux) print("潜热通量:", latent_heat_flux) ``` 请注意,上述代码仅为示例,实际应用中可能需要考虑更多的因素和修正项。具体的计算方法和参数取值可以根据实际需求进行调整。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暗中讨饭的卫3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值