给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。
方法一:自上而下的递归
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
//二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
//二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。
//height函数作用:判断以root为根节点的树的深度是多少
int height(TreeNode* root){
if(root == nullptr){ //如果当前递归的root节点为空,直接返回0
return 0;
}
//当root节点不为空的时候,判断其左子树的高度,和右子树的高度
else{
int left = height(root->left);
int right = height(root->right);
//返回左子树与右子树最大高度,+1代表根节点
return max(left,right) + 1;
}
}
bool isBalanced(TreeNode* root) {
//递归结束条件
if(root == nullptr){
return true;
}
else{
//返回时,首先判断当前递归的root节点时候是平衡二叉树,然后再判断当前递归的root节点的左右子树是否是平衡的。
return abs(height(root->left)-height(root->right)) <= 1 && isBalanced(root->left) && isBalanced(root->right);
}
//时间复杂度:O(n^2),其中 n 是二叉树中的节点个数。最坏情况下,二叉树是满二叉树,需要遍历二叉树中的所有节点,时间复杂度是 O(n)。对于节点 p,如果它的高度是 d,height(p) 最多会被调用 d 次(即遍历到它的每一个祖先节点时)。对于平均的情况,一棵树的高度 hh 满足O(h)=O(logn),因为 d≤h,所以总时间复杂度为 O(nlogn)。对于最坏的情况,二叉树形成链式结构,高度为 O(n),此时总时间复杂度为 O(n^2)。
//空间复杂度:O(n),其中 n 是二叉树中的节点个数。空间复杂度主要取决于递归调用的层数,递归调用的层数不会超过 n。
}
};
方法一由于是自顶向下递归,因此对于同一个节点,函数 height 会被重复调用,导致时间复杂度较高。如果使用自底向上的做法,则对于每个节点,函数 height 只会被调用一次。
方法二:自底向上递归
class Solution {
public:
int getHeight(TreeNode* root){
if(root == nullptr){
return 0;
}
//计算一下左子树的最大高度
int leftHeight = getHeight(root->left);
//如果左子树不是平衡的,直接返回-1,没有必要判断
if(leftHeight == -1) return -1;
//计算一下左子树的最大高度
int rightHeight = getHeight(root->right);
//如果右子树不是平衡的,直接返回-1
if(rightHeight == -1) return -1;
//判断当前遍历的节点是否是平衡的,如果不平衡返回-1
return abs(leftHeight-rightHeight)<=1 ? max(leftHeight,rightHeight)+1 : -1;
}
bool isBalanced(TreeNode* root) {
return getHeight(root) == -1 ? false : true;
}
//时间复杂度:O(n),其中n是二叉树中的节点个数。使用自底向上的递归,每个节点的计算高度和判断是否平衡都只需要处理一次,最坏情况下需要遍历二叉树中的所有节点,因此时间复杂度是O(n)。
//空间复杂度:O(n),其中n是二叉树中的节点个数。空间复杂度主要取决于递归调用的层数,递归调用的层数不会超过n。
};