力扣110. 平衡二叉树

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:

一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。

 

方法一:自上而下的递归 

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    //二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
    //二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。
    //height函数作用:判断以root为根节点的树的深度是多少
    int height(TreeNode* root){
        if(root == nullptr){      //如果当前递归的root节点为空,直接返回0
            return 0;
        }
        //当root节点不为空的时候,判断其左子树的高度,和右子树的高度
        else{
            int left = height(root->left);  
            int right = height(root->right);
            //返回左子树与右子树最大高度,+1代表根节点
            return max(left,right) + 1;
        }
    }
    bool isBalanced(TreeNode* root) {
        //递归结束条件
        if(root == nullptr){
            return true;
        }
        else{
            //返回时,首先判断当前递归的root节点时候是平衡二叉树,然后再判断当前递归的root节点的左右子树是否是平衡的。
            return abs(height(root->left)-height(root->right)) <= 1 && isBalanced(root->left) && isBalanced(root->right);
        }
    //时间复杂度:O(n^2),其中 n 是二叉树中的节点个数。最坏情况下,二叉树是满二叉树,需要遍历二叉树中的所有节点,时间复杂度是 O(n)。对于节点 p,如果它的高度是 d,height(p) 最多会被调用 d 次(即遍历到它的每一个祖先节点时)。对于平均的情况,一棵树的高度 hh 满足O(h)=O(logn),因为 d≤h,所以总时间复杂度为 O(nlogn)。对于最坏的情况,二叉树形成链式结构,高度为 O(n),此时总时间复杂度为 O(n^2)。

    //空间复杂度:O(n),其中 n 是二叉树中的节点个数。空间复杂度主要取决于递归调用的层数,递归调用的层数不会超过 n。
    }
};

方法一由于是自顶向下递归,因此对于同一个节点,函数 height 会被重复调用,导致时间复杂度较高。如果使用自底向上的做法,则对于每个节点,函数 height 只会被调用一次。

方法二:自底向上递归

class Solution {
public:
    int getHeight(TreeNode* root){
        if(root == nullptr){
            return 0;
        }
        //计算一下左子树的最大高度
        int leftHeight = getHeight(root->left);
        //如果左子树不是平衡的,直接返回-1,没有必要判断
        if(leftHeight == -1) return -1;
        //计算一下左子树的最大高度
        int rightHeight = getHeight(root->right);
        //如果右子树不是平衡的,直接返回-1
        if(rightHeight == -1) return -1;
        //判断当前遍历的节点是否是平衡的,如果不平衡返回-1
        return abs(leftHeight-rightHeight)<=1 ? max(leftHeight,rightHeight)+1 : -1;
    }
    bool isBalanced(TreeNode* root) {
        return getHeight(root) == -1 ? false : true;
    }
    //时间复杂度:O(n),其中n是二叉树中的节点个数。使用自底向上的递归,每个节点的计算高度和判断是否平衡都只需要处理一次,最坏情况下需要遍历二叉树中的所有节点,因此时间复杂度是O(n)。
    //空间复杂度:O(n),其中n是二叉树中的节点个数。空间复杂度主要取决于递归调用的层数,递归调用的层数不会超过n。
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值