二叉搜索树

本文详细介绍了二叉搜索树的定义、性质、插入、查找、遍历和删除等基本操作,并提供了相应的Java代码实现。同时,对二叉搜索树的性能进行了分析,指出在最优和最差情况下的平均查找长度。最后,通过示例展示了如何使用这些操作。
摘要由CSDN通过智能技术生成

1、定义

左子树节点的值小于根节点的值,右子树节点的值大于根节点的值

2、基本性质

设x是二叉搜索树中的一个结点。如果y是x左子树中的一个结点,那么y.key≤x.key。如果y是x右子树中的一个结点,那么y.key≥x.key。
在二叉搜索树中:

① 若任意结点的左子树不空,则左子树上所有结点的值均不大于它的根结点的值;
② 若任意结点的右子树不空,则右子树上所有结点的值均不小于它的根结点的值;
③ 任意结点的左、右子树也分别为二叉搜索树。

一棵典型的二叉搜索树如下:
在这里插入图片描述

3、二叉搜索树的基本操作

3.1插入

1.根节点为空,直接插入
2.如果根节点不为空,查找相应的位置进行插入
3.不能直接插入, 会破坏二叉搜索树, 只能在叶子结点进行插入
代码实现:

    public boolean insert(int val) {
        BSNode bsNode = new BSNode(val);
        if(root == null) {
            root = bsNode;
            return true;
        }
        BSNode cur = root;
        BSNode parent = null;
        while(cur != null){
            if(cur.val < val){
                parent = cur;
                cur = cur.right;
            }else if(cur.val > val){
                parent = cur;
                cur = cur.left;
            }else{
                return false;
            }
        }
        if(parent.val < val){
            parent.right = bsNode;
        }else{
            parent.left = bsNode;
        }
        return true;
    }

3.2查找

查找某一节点的值时,可以根据二叉搜索树的特性,从根节点开始查找,小于走左子树,大于走右子树
代码实现:

    public BSNode search(int val) {
        if(root == null) return null;
        BSNode cur = root;
        while(cur != null){
            if(cur.val == val){
                return  cur;
            }
            if(cur.val < val){
                cur = cur.right;
            }
            if(cur.val > val){
                cur = cur.left;
            }
        }
        return null;
    }

3.3遍历

采用递归的思想进行遍历
代码实现:

    public void inOrder(BSNode cur){
        if(cur == null){
            return;
        }
        inOrder(cur.left);
        System.out.print(cur.val+" ");
        inOrder(cur.right);
    }

3.4删除

对二叉树的节点进行删除时,产生的情况比较多,我们可以分情况讨论,这样清晰明了
设待删除结点为 cur, 待删除结点的双亲结点为 parent

1.cur.left == null

  1. cur 是 root,则 root = cur.right
  2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.right
  3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.right

2.cur.right == null

  1. cur 是 root,则 root = cur.left
  2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.left
  3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.left

3.cur.left != null && cur.right != null

等效替换法:需要使用替换法进行删除,即在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被
删除节点中,再来处理该结点的删除问题

代码实现:

    public void remove(int val) {
        if(root == null){
            return;
        }
        BSNode cur = root;
        BSNode parent = null;
        while(cur != null){
            if(cur.val == val){
                removeNode(parent,cur,val);
                break;
            }else if(cur.val < val){
                parent = cur;
                cur = cur.right;
            }else{
                parent = cur;
                cur = cur.left;
            }
        }
    }

    //删除具体实现
    public void removeNode(BSNode parent,BSNode cur,int val){
        if(cur.left == null){
            if(cur == root){
                root = root.right;
            }else if(cur == parent.left){
                parent.left = cur.right;
            }else{
                parent.right = cur.right;
            }
        }else if(cur.right == null){
            if(cur == root){
                root = root.left;
            }else if(cur == parent.left){
                parent.left = cur.left;
            }else{
                parent.right = cur.left;
            }
        }else{
            BSNode targetParent = cur;
            BSNode target = cur.right;
            while(target.left != null){
                targetParent = target;
                target = target.left;
            }
            cur.val = target.val;

            if(target == targetParent.left){
                targetParent.left = target.right;
            }else{
                cur.right = target.right;
            }
        }
    }

4、性能分析

对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。
(1)最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:O(logN)
(2)最差情况下,二叉搜索树退化为单支树,其平均比较次数为:O(N)

5、完整代码

package demo03;
import java.util.LinkedList;
class BinarySearchTree {

    //二叉树的节点
    static class BSNode {
        public int val;
        public BSNode left;
        public BSNode right;
        public BSNode(int val) {
            this.val = val;
        }
    }

    //根节点初始化为空
    public BSNode root = null;

    //二叉搜索树的中序遍历
    public void inOrder(BSNode cur){
        if(cur == null){
            return;
        }
        inOrder(cur.left);
        System.out.print(cur.val+" ");
        inOrder(cur.right);
    }

    //二叉搜索树的层次遍历
    public void levelOrder(BSNode root){
        BSNode cur = root;
        if(cur == null){
            return;
        }
        LinkedList<BSNode> list = new LinkedList<>();
        list.add(cur);
        while(!list.isEmpty()){
            BSNode dan = list.poll();
            System.out.print(dan.val+" ");
            if(dan.left != null){
                list.offer(dan.left);
            }
            if(dan.right != null){
                list.offer(dan.right);
            }
        }
    }

    //二叉搜索树的查找
    public BSNode search(int val) {
        if(root == null) return null;
        BSNode cur = root;
        while(cur != null){
            if(cur.val == val){
                return  cur;
            }
            if(cur.val < val){
                cur = cur.right;
            }
            if(cur.val > val){
                cur = cur.left;
            }
        }
        return null;
    }


    //二叉搜索树的插入
    public boolean insert(int val) {
        BSNode bsNode = new BSNode(val);
        if(root == null) {
            root = bsNode;
            return true;
        }
        BSNode cur = root;
        BSNode parent = null;
        while(cur != null){
            if(cur.val < val){
                parent = cur;
                cur = cur.right;
            }else if(cur.val > val){
                parent = cur;
                cur = cur.left;
            }else{
                return false;
            }
        }
        if(parent.val < val){
            parent.right = bsNode;
        }else{
            parent.left = bsNode;
        }
        return true;
    }

    //二叉搜索树的删除
    public void remove(int val) {
        if(root == null){
            return;
        }
        BSNode cur = root;
        BSNode parent = null;
        while(cur != null){
            if(cur.val == val){
                removeNode(parent,cur,val);
                break;
            }else if(cur.val < val){
                parent = cur;
                cur = cur.right;
            }else{
                parent = cur;
                cur = cur.left;
            }
        }
    }

    //删除具体实现
    public void removeNode(BSNode parent,BSNode cur,int val){
        if(cur.left == null){
            if(cur == root){
                root = root.right;
            }else if(cur == parent.left){
                parent.left = cur.right;
            }else{
                parent.right = cur.right;
            }
        }else if(cur.right == null){
            if(cur == root){
                root = root.left;
            }else if(cur == parent.left){
                parent.left = cur.left;
            }else{
                parent.right = cur.left;
            }
        }else{
            BSNode targetParent = cur;
            BSNode target = cur.right;
            while(target.left != null){
                targetParent = target;
                target = target.left;
            }
            cur.val = target.val;

            if(target == targetParent.left){
                targetParent.left = target.right;
            }else{
                cur.right = target.right;
            }
        }
    }
}
public class TestDemo {

    public static void main(String[] args) {
        BinarySearchTree binarySearchTree = new BinarySearchTree();
        
        System.out.print("中序遍历为:");
        binarySearchTree.inOrder(binarySearchTree.root);
        System.out.println();

        System.out.print("层次遍历为:");
        binarySearchTree.levelOrder(binarySearchTree.root);
        System.out.println();

        System.out.println("=====删除======");
        binarySearchTree.remove(4);
        System.out.print("中序遍历为:");
        binarySearchTree.inOrder(binarySearchTree.root);
        System.out.println();

        System.out.print("层次遍历为:");
        binarySearchTree.levelOrder(binarySearchTree.root);
        System.out.println();
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值