自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(258)
  • 资源 (4)
  • 收藏
  • 关注

原创 校招--深度学习面经记录

1、Embedding作用Embedding能够用低维向量对物体进行编码仍保留其含义特点Embedding性质: 1)若两物体相似,则其对应向量的距离较近 2)其从另一个空间表达物体,揭示了物体间的前年在联系用途:常常 大体量数据 其 One- hot encoding 维度过高(数据分布过于离散和稀疏化,稀疏不...

2019-07-30 12:02:24 231

原创 leetcode 每天10道travl

1、找到a,找到b,让a + b = target思路:将{a:b}={a:target-a} 的形式不断探寻字典class Solution: def twoSum(self, nums, target): """ :type nums: List[int] :type target: int :rtype:...

2019-07-04 19:27:51 269

原创 leetcode总结(中级阶段)

1)只出现一次的数字异或法2)求众数set()函数的使用3)搜索二维矩阵 II二分搜索法4)合并两个有序数组双指针法5)鸡蛋掉落K:鸡蛋 N:总楼高 F:蛋碎阈值(大于F会碎)最优法6)验证回文串转换法7)分割回文串深度遍历8)单词拆分统计法9)单词拆分 II统计法+深度遍历10...

2019-04-05 17:21:52 205

原创 leetcode总结(初级阶段)

1.从排序数组中删除重复项统计法2.买卖股票的最佳时机 II状态位法3.旋转数组切片法4.存在重复统计法5.只出现一次的数字统计法(超时)位操作新建列表记录法6.两个数组的交集 II统计法7.加一转化法8.移动零统计法9.两数之和统计法10.有效的数独穷...

2019-03-29 22:46:56 93

原创 算法面经问题记录(全会你就牛逼了,一面一个准!)

1.样本不均衡问题1)增少:SMOTE算法:简单来说smote算法的思想是合成新的少数类样本,得到少数样本A的最近邻中随机样本B,取AB连线的随机点合成下采样2)减多随机欠抽样方法:上采样3)增加样本惩罚项权重2.过拟合问题?1)降低模型复杂度2)增大数据集3)数据清洗4)正则化项(即增加惩罚度,L0(非零参数个数),L1(元素绝对值之和),L2范...

2019-02-27 09:16:54 2039

原创 排序

排序算法有8种:插入排序:直接插入,希尔排序选择排序:选择,堆排序交换排序:冒泡排序,快速排序归并排序基数排序上面八种排序我们可以用一个场景进行串联:——打针记忆方法护士给我们治病打针,用针管插到血管中的方式有两种一个是直接插入(直接插入排序),还有个先画一个S符号然后插入(shell排序),药物进入到血液中后,进行对好的细胞和有病的细胞进行区分(选择排序),我们可...

2018-12-04 09:47:52 158

原创 算法总结

1)Rcnn 贡献:1)采用监督预训练方式(解决大量数据需求问题) 2)候选区域提出(解决计算量大的问题)本质:将候选区域设定在backbone前,Resize后进行特征提取分类回归第一步:RP选取:SS算法(无监督) SS算法:1)使用Efficient Graph-Based Image Segmentation获取原始图片分割区域 ...

2018-11-01 17:55:56 576

原创 调参GG

一.超参数:影响时间和准确率:5)学习迭代次数 epoch 6)miniBatch :批量数据大小 11)样本数量影响学习速度: 1)学习率η 8)代价函数选择 ...

2018-10-31 14:06:51 124

原创 docker nvidia install

1. 创建用户组sudo groupadd docker2.添加用户进入docker组,以便该用户可以使用dockersudo gpasswd -a ${USER} docker3.重启服务sudo service docker restart4.修改docker仓库和存放目录sudo vim /etc/docker/daemon.json5.修改如下,其中https://cwoel6s9.mirror.aliyuncs.com 为从阿里服务器申请的镜像地址,/data/docker...

2021-05-18 15:45:01 50

原创 pip source

(1)阿里云http://mirrors.aliyun.com/pypi/simple/(2)豆瓣http://pypi.douban.com/simple/(3)清华大学https://pypi.tuna.tsinghua.edu.cn/simple/(4)中国科学技术大学http://pypi.mirrors.ustc.edu.cn/simple/(5)华中科技大学http://pypi.hustunique.com/...

2021-01-29 10:56:54 79 1

原创 2021-01-17

2021-01-17 18:18:21 37

转载 linux下用Kazam录屏视频在windows不能播放解决

原文章:http://blog.csdn.net/qq_31806429/article/details/78832902描述之前在ubuntu上记录一些东西,但是转而在windows就不能播放,查了一下资料说是解码器的问题。大概也有网友遇到类似问题,那就分享一下吧!解决1. windows上下载安装软件HandBrake (点这里)2. 打开之后点击 Open Source,添加需要处理的视频3. 设置Destination的路径及处理后的视频名称4. 设置目标视频的属性5...

2020-12-05 19:13:05 285

原创 ubuntu 16.04 LTS 安装SecureCRT

1、sudo dpkg -i scrt-7.3.4-839.ubuntu13-64.x86_64.deb2、sudo perl securecrt_linux_crack.pl /usr/bin/SecureCRT反馈出这些信息:License: Name: xiaobo_l Company: www.boll.me Serial Number: 03-15-097355 License Key: AC81ET 9RKAWY 6W...

2020-10-28 17:47:29 203

原创 COCO 格式

COCO的 全称是Common Objects in COntext,是微软团队提供的一个可以用来进行图像识别的数据集。MS COCO数据集中的图像分为训练、验证和测试集。COCO通过在Flickr上搜索80个对象类别和各种场景类型来收集图像,其使用了亚马逊的Mechanical Turk(AMT)。比如标注image captions(看图说话)这种类型的步骤如下:(AMT上COCO标注步骤)COCO通过大量使用Amazon Mechanical Turk来收集数据。COCO数据集现在有3

2020-10-20 15:34:46 387

原创 Lightweight OpenPose

Real-time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose1、优势1) 迷你PCIntel®NUC上的28 fps(它消耗的功率很少,并具有45瓦CPU TDP)2)在常规CPU上为26 fps,而无需图形处理器3)AP精度下降不超过1%(大小仅4.1M ,是two-stages openpose的15%)2、常规openpose总结:1、...

2020-09-28 15:58:05 1371

原创 tensorboard 远程服务器训练可视化

1)ssh服务器时需要指定端口ssh -L 16006:127.0.0.1:6006用户名1@网络地址2)运行 tensorboard --logdir=xxx --port=6006 这里的xxx表示文件存储的目录3)在本地浏览器输入 127.0.0.1:16006 即可在本地显示tensorboard如果端口被占用,可使用命令# 如果找不到lsof命令,则需要下载lsof $ apt-get install lsoflsof -i:6006然后关闭该端口...

2020-09-27 16:20:19 256

原创 ubuntu远程服务器部署

一、 功能介绍将Ubuntu系统的服务器功能打开,可以使用其他电脑对其实现远程访问,一般将硬件性能较好的电脑开启作为服务器,使用性能一般的电脑对其进行访问。二、开启SSH 服务step1:检查主机有没有ssh服务功能,输入如下命令ssh localhost1如果出现ssh:ssh:connect to host localhost port 22: Connection refused ,则表明没有安装。step2:没有安装,使用如下命令进行安装,安装则跳过sudo apt-

2020-09-23 16:10:40 154

原创 Pose Flow: Efficient Online Pose Tracking

简单介绍: 多人姿态跟踪方法,其主要方法和多人姿态检测一样,也可以分为自顶向下和自下而上。 1.自顶向下是:在每帧中检测 人的proposals →关键点→相邻帧相似性 跟踪整个视频; 2.自下而上是:在每帧中生成关键点候选点→时空图→求解整数线性规划将时空图分为子图→每个子图对应人体姿势轨迹。 目前,自顶向下的方法在精度(map和mota)和跟踪速度上都大大优于自下而上的方法,因为自下而上的方法由于仅仅利用二阶身体部件依赖而失去...

2020-09-10 14:46:23 62

原创 常用生成网络两种方式 tensorflow+ keras

1、官方文档推荐的定义类,调用call函数通过继承tf.keras.Model并定义自己的前向传递来构建完全可自定义的模型。 在init方法中创建图层并将它们设置为类实例的属性。 在call方法中定义正向传递。直接返回 numpy向量class MyModel(keras.Model): def __init__(self, num_classes=10): super(MyModel, self).__init__(name='my_model')

2020-09-03 12:10:30 71

原创 docker 移植

1、拉取镜像docker pull2、创建容器sudo docker run -it -d --name tensorflow2.3 -v /home/xmart/Pictures:/workdir/ --net=host -e DISPLAY --runtime=nvidia tensorflow:2.3 bash3、实例化对象docker exec -it tensorflow2.3 bash4、修改后提交docker committensorfl...

2020-08-29 17:13:02 119

原创 Anchor的本质

来源:从卷积框得到的灵感,若某层特征图大小为51x39x256(256是层数:H,W,C),通过一个3x3的滑动窗口,在这个51x39的区域上进行滑动,stride=1,padding=1,这样一来,滑动得到的就是51x39个3x3的窗口。经验:此时,我们可以通过卷积框的中心点得到原始图片的中心点。此时我们假设,每个3*3的窗口,都是由原图经过 spp 池化得到的。且该窗口来自于9种不同区域的池化(但是这些池化在原始图片中心点都一样)。如此一来,在每个窗口位置,我们都可以根据9个不同..

2020-08-24 09:51:53 54

原创 2020-08-18 glassnet

1、最小单位Residual 模块首先:白色方框:卷积操作浅蓝:Batch Normalization浅紫:ReLU第一行为卷积路,由三个核尺度不同的卷积层(白色)串联而成,间插有Batch Normalization(浅蓝)和ReLU(浅紫);第二行为跳级路,只包含一个核尺度为1的卷积层;如果跳级路的输入输出通道数相同,则这一路为单位映射。其中,卷积路做了特征提取的工作,跳级路做了特征回馈作用。例如: 卷积路: 1*1...

2020-08-18 15:55:21 78

转载 深度可分离卷积

首先,对于普通卷积:我们从[12,12,3]的input feature map到[8,8,256]的output feature map,需要256个[5,5,3]的卷积核。参数量为256 x 5 x 5 x 3 = 19200,乘法次数为256 x 5 x 5 x 3 x 8 x 8 = 1228800(可以理解为FLOPs)。对于depth-wise卷积:分为2部分:Separable Conv 以及 Point-wise Conv.同样的,从[12,12,3]的input

2020-08-17 15:41:09 77

原创 linux多终端神器 terminator

sudo add-apt-repository ppa:gnome-terminatorsudoapt-get updatesudo apt-get install terminator上下分屏=>Ctrl+Shift+o,左右分屏=>Ctrl+Shift+e关闭一个窗口或分屏=>Ctrl+Shift+w,退出终端=>Ctrl+Shift+q控制窗口大小 快捷式:Ctrl+Shift+ ←↑↓→,切换窗口Ctrl+tab 窗口最大化=> F11...

2020-08-14 12:03:16 84

原创 IR图,深度图,点云

1.深度图像也叫距离影像,是指将从图像采集器到场景中各点的距离(深度)值作为像素值的图像。获取方法有:激光雷达深度成像法、计算机立体视觉成像、坐标测量机法、莫尔条纹法、结构光法。2.点云:当一束激光照射到物体表面时,所反射的激光会携带方位、距离等信息。若将激光束按照某种轨迹进行扫描,便会边扫描边记录到反射的激光点信息,由于扫描极为精细,则能够得到大量的激光点,因而就可形成激光点云。点云格式有*.las ;*.pcd; *.txt等。深度图像经过坐标转换可以计算为点云数据;有规则及必要信息的点云数据可以反

2020-08-10 20:29:15 1056

原创 本地项目上传到gitlab

1、安装githttps://git-scm.com/downloads2、新建工程a、步骤一b、步骤二3、创建密钥 a、桌面右键b、cd ~/.ssh/如果提示 “ No such file or directory”,你可以手动的创建一个 .ssh文件夹即可mkdir ~/.sshc、配置全局的name和email,参照你创建的工程Git global setupgit config --global user....

2020-08-05 18:01:08 232

原创 利用Docker生产openpose心得

1、 安装docker 与nvidia-docker2、pull docker 仓库仓库1:仓库2:git pull exsidius/openpose3、安装xhost进行本地可视化映射1、安装:sudo apt-get install x11-xserver-utils2、打开权限xhost +3、建立交互镜像容器sudo docker run -it -d --name openpose -v /home/xmart/Documents/...

2020-08-03 11:53:02 183

原创 docker 牛逼的源

1、创建病打开sudo gedit /etc/docker/daemon.json2、{ "registry-mirrors": ["https://pee6w651.mirror.aliyuncs.com"]}{ "registry-mirrors": ["http://f1361db2.m.daocloud.io"]}3、重启systemctl restart docker.service4、查看docker info...

2020-07-22 17:06:09 73

原创 使用anaconda中的conda 当做容器

1、利用conda创建一个python 3.7环境conda create -n pytorch-openpose python=3.72、去激活该环境,即shell 进入该临时环境中conda activate pytorch-openpose 出现erro: 需要重打开环境 1) source activate 激活 2)source deactive 关闭 ...

2020-07-17 11:27:01 190

原创 Linux 系统 在git 上的加速

原因: 访问github受限.解决方案:通过设置github.global.ssl.fastly.net的ip,修改DNS来提高速度先使用nslookup查看域名的ip[root@VM_0_3_centos projects]# nslookup github.global.ssl.fastly.netServer: 183.60.83.19Address: 183.60.83.19#53Non-authoritative answer:Name: github.globa..

2020-07-14 16:20:47 374

原创 奥比第一周

1、Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields (Openpose)网络结构:{VGG-19的前十层+两层CNN}和{CNN-Branch1、CNN-Branch2}两个部分组成。第一部分: 输出第一部分网络输出F的维度为128w/8*h/8 目的: 卷积网络学习到关键点特征第二部分:Branch1和Branch2两个网络是级联网络的结构(并行),该结构类似于RNN网络,根据上一时刻的关...

2020-07-09 21:06:05 206

原创 Git

Git: 分布式,开源,版本控制软件 ,本地 用途:管理Linux内核开发GitHub:基于Git的远程文件托管平台无GitHub:在本地 .git 文件夹内维护历时文件 有GitHub:在本地 .git 文件夹内维护历时文件,同时也将历时文件托管在远程仓库...

2020-07-08 13:44:27 63

原创 高斯滤波

目的:消除高斯噪声,广泛应用于图像去噪本质:整幅图像像素值进行加权平均,利用高斯正态分布对图片像素值进行重分配(将中心点"作为原点,其他点按照其在正态曲线上的位置,分配权重)滤波 = 卷积( 输入信号 ,卷积模板或称为掩膜(需要利用高斯正态分布得到的高斯掩膜))...

2020-07-08 11:12:55 75

原创 5月算法

1)数据结构存储方式:数组(顺序存储) + 链表(链式存储) 列表,栈:链表或数组 邻接表:链表 邻接矩阵:二维数组

2020-05-08 12:19:59 67

原创 3月

216. 组合总和 III找出所有相加之和为n 的k个数的组合。组合中只允许含有 1 -9 的正整数,并且每种组合中不存在重复的数字。说明:所有数字都是正整数。解集不能包含重复的组合。示例 1:输入: k = 3, n = 7输出: [[1,2,4]]示例 2:输入: k = 3, n = 9输出: [[1,2,6], [1,3,5], [2,3,4]]...

2020-03-14 12:39:07 76

原创 股票算法框架题解

题型:1)只进行一次交易,即 k = 12)不限交易次数,相当于 k = +infinity(正无穷)3)进行 2 次交易,相当于 k = 24)不限次数,但是加了交易「冷冻期」和「手续费」的额外条件框架建立(利用高维数组建立状态位法):dp[i][k][0 or 1]i:表天数 k:表剩余交易次数 [0 或 1]:表持有股票状态即有:dp[i][...

2020-03-06 12:24:29 144

原创 三剑客之awk

三剑客(awk,sed,grep)awk是一个报告生成器,它拥有强大的文本格式化的能力。awk的基本语法是awk [options] 'Pattern{Action}' file从一个最简单的命令作为start,省略[options]和Pattern,将Action设置成最简单的print:$ echo abc > test.txt$ awk '{print}' t...

2020-03-02 11:00:15 54

原创 python3 深度搜索DPS 与 宽度搜索 DFS

1、 DFS 规律: 从root到子节点,从上到下,从左到右 代码: 一般用栈来解决、 2、深度优先 三种便利方式,仅仅在当前数的打印位置不同例题: 解题思路:对于任一节点,其有选和不选两种情况。我们每次考虑一棵...

2020-02-28 12:29:56 383

原创 二维背包问题

本质: 状态转移方程,即下一时刻状态受上一时刻状态的影响步骤:1、建立目标域 (即,多个背包的可能性组合)2、判断当前时刻的状态值例题:输入: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3输出: 4解释: 总共 4 个字符串可以通过 5 个 0 和 3 个 1 拼出,即 "10","0001","1"...

2020-02-26 12:21:17 215

原创 ROM, FLASH和RAM的区别

ROM (Read Only Memory)程序存储器1、为什么要只读?常用来储存定义变量的基础文件, 例如c文件及h文件中所有代码、全局变量、局部变量、‘const’限定符定义的常量数据、startup.asm文件中的代码(类似ARM中的bootloader或者X86中的BIOS,一些低端的单片机是没有这个的)通通都存储在ROM中缺点: 常见得ROM 十分难擦除FLASH ...

2020-02-25 18:59:43 70

基于matlab车牌识别

基于matlab车牌识别,包括了灰度化,对比度增强,边缘提取,锐化,车牌定位,神经网络训练,车牌识别,完整的项目,可运行!!!!!!

2018-06-03

安装faster rcnn caffe 傻子教程 从驱动到运行

安装faster rcnn caffe 傻子教程 从驱动到运行.超级完整,花了半个月研究出来的完整流程,只收5个积分,真亏了。。

2018-08-07

基于matlab手写识别

完全手写的CNN代码,没有用任何框架和三方库,基于matlab的完美代码,运行效率很高,作为初学者转的必备,课运行!!!!!!!!!! 一切框架来自手写!!!!

2018-06-03

发表于2018/7/26

有关于图片分类的代码,图片,详细说明了如何遍历整个文件夹和按一定规则分类

2018-07-31

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除