Context-aware In-process Crowdworker Recommendation 论文

Context-aware In-process Crowdworker Recommendation 

上下文感知 过程中 众测工人推荐
重点:过程中动态调整,可以参考用户的打标签方法,以及任务的测试充分度(利用term)
现有方法存在的问题:
long-sized non-yielding windows
no new bugs are revealed in consecutive test reports during the process of a crowdtesting task
测试环境、经验、能力、专业偏向
by modeling the workers’ testing environment [51, 60], experience [13, 60], capability [51], or expertise with the task 
上述方法参照【Characterizing Crowds to Better Optimize Worker Recommendation in Crowdsourced Testing】只是在任务刚发布的开始阶段 提供一次性的推荐 
They merely provide one-time recommendation at the beginning of a new task, without considering constantly changing context information of ongoing testing processes. 
解决:
提出iRec,基于上下文感知,在众包测试过程中进行推荐
at a specific point of crowdtesting process

iRec三部分:

iRec consists of three main components: testing context modeling, learning-based ranking, and diversity-based re-ranking
分别对应于:
• The crowdtesting context model which consists of two perspectives, i.e., process context and resource context to facilitate in-process crowdworker recommendation. 
建立模型:
资源模型——活跃、偏好、专业、设备
过程模型——
• The development of the learning-based ranking method to learn appropriate crowdworkers who can detect bugs in a dynamic manner. 
找出最有可能检测出报告的人
• The development of the diversity-based re-ranking method to adjust the ranked workers to reduce duplicate bugs.
减少重复度,让可能检测树出报告的人之间有一定的差异性,避免大量重复bug的产生
研究背景:
• 任务可能被分配给根本不适合这个任务的人,最终没有bug被找出
• 任务被分给很多同类型的工人,他们找出的bug很多都是重复的
• 体现在下图中就是平行线,称为a non-yielding window,没有新的bug被发现
众包工人:活跃度、偏好、专业偏向(一个工人偏好一些任务并不代表选择该任务后能检测出bug)
Preference focuses more on whether a crowdworker would take a specific task, and expertise focuses more on whether a crowdworker can detect bugs in the task.

Approach:

数据预处理

需要知道任务信息、到目前为止该任务接收的所有报告、所有的工人信息(包括他们提交的所有历史报告以及在当前任务下提交的报告)、历史众测任务
仿照现有研究,将文档分词、去除停用词、同义词替换,最终将document表示为一个term向量
There are two types of textual documents in our data repository: one is test reports and the other is test requirements. Following the existing studies [48, 52], each document goes through standard word segmentation, stopwords removal, with synonym replacement being applied to reduce noise. As an output, each document is represented using a vector of term
根据文档频率将所有的term排序,去除最高和最低的5%,这样就得到了一个descriptive terms list来表示document
由于测试报告往往比较短,tf不具有区分度所以不适用
We rank the terms according to the number of documents in which a term appears (i.e., document frequency, also known as df )

1.Testing Context Modeling 

Process context——测试充分性
将测试任务的要求也变为term list的形式
定义descriptive term of task requirements中每个term的测试充分性
tj表示descriptive term of task requirements中的某个词
ie:统计这个词在所有收到的该任务的cesium报告中的出现频率,频率越高、测试越充分
Resource context
活跃度度量:
preference的度量:
ProbPref——当想要产生一个含有termj的测试报告时,推荐工人w的可能性probability
图:
expertise的度量:
如图
与prefernce的唯一不同是,这里是从bug report中寻找tf和df
device:
Phone type used to run the testing task, 
Operating system of the device model, 
ROM type of the phone, 
Network environment

2.Learning-based Ranking

(具体的计算,match等)
定义三个相似度计算方法,定义学习模型,找出相似度高的降序排列(设置一个阈值,过低时不考虑推荐)
?建模

3.Diversity-based Re-ranking 

定义两个差异度公式 专业和设备两个角度
第二部得到一个推荐列表w1-w(recnum)
迭代下面的操作
使用一个集合S,初始为空
1.将w1移入S
2.计算定义的两个差异度
3.添加一个设备权值,计算综合差异度,将w2-w(recnum)中综合差异度值最小的移入S
这样得到的列表,排序就综合考虑了工人的能力以及bug重复度(不要有太多重复的bug)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值