0 概述
目标检测是一个很大很大的概念,目的是找到我们想要找的东西(定位+分类)。由于应用领域的不同,其可以被分为面向各种任务的目标检测(断不可认为目标检测就是针对某一特定应用领域下的检测,如无人驾驶下的检测,我之前就陷在了这里,格局打开)。
由于分类角度的不同,目标检测可以被划分为各种各样的类别,从而使我们感到十分迷惑,为了消除这些疑惑,以下对目标检测的分类进行梳理。
1 总览
总体来说,针对检测维度的不同,目标检测可被分为二维 (2D) 目标检测和三维 (3D) 目标检测。针对阶段的不同,又可被分为一阶段 (one-stage) 目标检测和二阶段 (two-stage) 目标检测。下面按分类维度进行叙述。
2 二维目标检测
2.1 针对使用的数据分类
就 2D 目标检测来说,由于使用数据的不同又可将其分为基于图像(可见光图像、深度图像、红外图像等)的 2D 检测、基于点云(Lidar获取的点云、Radar获取的点云、深度相机获取的点云等)的 2D 检测、基于多模态融合的 2D 检测。
2.2 针对应用背景分类
针对应用背景的不同,2D 目标检测包括但不限于遥感图像目标检测、无人驾驶目标检测、小目标目标检测、密集目标检测、船舶检测、无人机图像目标检测、水下目标检测等。
3 三维目标检测
同 2D 目标检测类似,针对使用数据的不同可将 3D 目标检测分为基于图像的 3D 检测、基于点云的 3D 检测、基于多模态融合的 3D 检测。
3D 目标检测的应用背景同样很多,而目前最火的当是面向无人驾驶的 3D 目标检测。
就无人驾驶 3D 目标检测来说,根据使用数据的不同同样可以被分为基于图像的 3D 检测、基于点云的 3D 检测、基于多模态融合的 3D 检测。
而基于图像的 3D 目标检测又可被分为基于多视图的 3D 检测、基于深度(双目)相机的 3D 检测;
基于点云的目标检测可被分为基于点的 3D 检测、基于体素的 3D 检测、基于点-体素的3D 检测。