数据预处理作业

本文介绍了数据预处理的重要概念,包括数据的均值、中位数、众数的计算,以及数据的等频和等宽划分方法。此外,详细阐述了如何使用最小-最大规范化、z-score规范化和小数定标规范化对数据进行标准化处理,以36作为示例进行计算。
摘要由CSDN通过智能技术生成

数据预处理作业

数据预处理2

1. (简答题, 15分)

假定用于分析的数据包含属性 age。数据元组的 age 值(以递增序) 是:13,15,16,16,19,20,20,21,22,22,25,25,25,25,30, 33,33,35,35,35,35,36,40,45,46,52,70。回答以下问题:

(a) 该数据的均值是多少?中位数是什么?(5分)

(b) 该数据的众数是什么?(5分)

(c) 该数据的中列数是多少?(5分)

正确答案:

(a) 数据的均值是29.96,中位数是25

(b) 数据的众数是25和35

(c) 数据的中列数是41.5

2. (简答题, 50分)

假设12个销售价格记录组已经排序如:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215。使用如下每种方法将它们划分成三个箱。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值