题目:给定n个区间进行合并
链接:区间合并
关于合并前的思考:
首先要对区间进行排序,注意这里要按左端点排序,而不能按右端点排序!
假如按照右端点进行排序
我们要保证遍历更新时,后面的状态不能对前面已经完成的状态造成更改。我们在遍历到2时会判断出1和2是两个区间,那么此时1就是一个已经确定的区间(后面只会从2更新)。
然而当遍历到3是可以发现3的左端点可以任意向左延伸,这说明我们已经完成更新的区间会不断遭到破坏,所以说这种方法是不可取的。
假如按照左端点进行排序
同样的情况,1被认为已经确定的独立区间,我们遍历到3时可以发现:因为按照左端点排序的缘故,所有存在的情况都不会对之前的状态(区间1)造成影响,就这样更新下去,最后才是正确的答案!
解决了这个问题,在遍历过程中维护区间的L和R,及时保存即可。
源代码:
class Solution {
public:
vector<vector<int>> merge(vector<vector<int>>& nums) {
vector<vector<int>>ans;
//这里自定义排序可以不写,默认按第一个元素排序
//sort(nums.begin(),nums.end());
sort(nums.begin(),nums.end(),[](vector<int>&c,vector<int>&d){
return c[0]<d[0];
});
//为了防止最后一个区间漏掉忘记放入ans
nums.push_back({100010,100010});
int n=nums.size();
int l=nums[0][0],r=nums[0][1];
for(int i=1;i<n;i++){
//按照左端点排序,此时新区间左端点大于之前的右侧临界值,
//说明产生新区间
if(nums[i][0]>r){
ans.push_back({l,r});
l=nums[i][0];
r=nums[i][1];
}
else{
r=max(r,nums[i][1]);
}
}
return ans;
}
};