- 数组中的第K个最大元素
给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。
请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
示例 1:
输入: [3,2,1,5,6,4] 和 k = 2
输出: 5
示例 2:
输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4
提示:
- 1 <= k <= nums.length <= 10^4
- -10^4 <= nums[i] <= 10^4
普通做法
class Solution {
public int findKthLargest(int[] nums, int k) {
int size = nums.length;
Arrays.sort(nums);
return nums[size-k];
}
}
快速排序做法
算法分析
快速排序的思想(不会快速排序的建议看视频学习一下)
- 1、在特定区间[l, r]中,选中某个数x,将大于等于x的放在左边,小于x的放在右边,其中[l, j]是大于等于x的区间,[j + 1,r]是小于x的区间
- 2、判断出第k大与j的大小关系,若符合大于等于x,则递归到[l, j]区间,否则递归到[j + 1,r]的区间
- 注意:此处求的是第k大,而里面的方法k是指第k个位置,需要变成k - 1
class Solution {
public static void swap(int[] q,int i,int j){
int t = q[i];
q[i] = q[j];
q[j] = t;
}
static int quick_sort(int[] nums, int l, int r, int k){
if(l>=r) return nums[l];
int i = l -1,j = r+1;
int x = nums[l+r>>1];
while(i<j){
do{i++;} while(nums[i]>x);
do{j--;} while(nums[j]<x);
if(i<j) swap(nums,i,j);
}
if(k<=j) return quick_sort(nums,l,j,k);
else return quick_sort(nums,j+1,r,k);
}
public int findKthLargest(int[] nums, int k) {
return quick_sort(nums,0,nums.length-1,k-1);
}
}