矩阵连乘问题(动态规划)

该博客介绍了如何使用动态规划解决矩阵链乘法的问题,以最小化矩阵相乘的运算次数。提供了两种实现方式,分别是递归解法和备忘录法,并通过示例代码展示了具体的操作过程。动态规划算法能够有效地找到最佳的括号放置策略,降低计算复杂度。
摘要由CSDN通过智能技术生成

题目描述:
给定n个矩阵{A1,A2,…,An},其中,Ai与Ai+1是可乘的,(i=1,2 ,…,n-1)。用加括号的方法表示矩阵连乘的次序,不同的计算次序计算量(乘法次数)是不同的,找出一种加括号的方法,使得矩阵连乘的次数最小。在这里插入图片描述算法:最优子结构如下:假设A1A2...An的一个最优加括号把乘积在Ak和Ak+1间分开,则前缀子链A1...Ak的加括号方式必定为A1...Ak的一个最优加括号,后缀子链同理。一开始并不知道k的确切位置,需要遍历所有位置以保证找到合适的k来分割乘积。](https://img-blog.csdnimg.cn/20210329163250548.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQ3Mjk5NDIx,size_16,color_FFFFFF,t_70)构造递归解:设m[i,j]为矩阵链Ai…Aj的最优解的计算花费代价在这里插入图片描述在这里插入图片描述
代码一:

#include <iostream>
#include <cstdlib>
using namespace std;
int m[100][100];
int s[100][100];
void MatrixChain(int *p,int n)//求最优值
{
    for(int i=0;i<=n;i++)
        m[i][i]=0;
    for(int r=2;r<=n;r++)
    {
        for(int i=1;i<=n-r+1;i++)
        {
            int j=i+r-1;
            m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];
            s[i][j]=i;
            for(int k=i+1;k<j;k++)
            {
                int t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
                if(t<m[i][j])
                {
                    m[i][j]=t;
                    s[i][j]=k;
                }
            }
        }
    }
}
void Traceback(int i,int j)//求最优解
{
    if(i==j)
       return;
    Traceback(i,s[i][j]);
    Traceback(s[i][j]+1,j);
    cout<<"Multipy A"<<i<<","<<s[i][j];
    cout<<" and A"<<(s[i][j]+1)<<","<<j<<endl;
}
int main()
{
   int p[]={30,35,15,5,10,20,25};
   MatrixChain(p,6);
   cout<<m[1][6]<<endl;
   Traceback(1,6);
   return 0;
}

代码二:
在这里插入图片描述

#include <iostream>
#include <cstdlib>
using namespace std;
int m[100][100];
int s[100][100];
int p[7]={30,35,15,5,10,20,25};
int LookupChain(int i,int j)
{
    if(m[i][j]>0)    //表示相应的子问题已经被计算过了,直接返回结果即可
        return m[i][j];
    if(i==j)
        return 0;
    int u=LookupChain(i,i)+LookupChain(i+1,j)+p[i-1]*p[i]*p[j];
    s[i][j]=i;
    for(int k=i+1;k<j;k++)
    {
        int t=LookupChain(i,k)+LookupChain(k+1,j)+p[i-1]*p[k]*p[j];
        if(t<u)
        {
            u=t;
            s[i][j]=k;
        }
    }
    m[i][j]=u;
    return u;
}
int MemoizeMatrixChain(int n)//求最优值
{
    for(int i=1;i<=n;i++)
        for(int j=i;j<=n;j++)
            m[i][j]=0;
    return LookupChain(1,n);
}
void Traceback(int i,int j)//求最优解
{
    if(i==j)
       return;
    Traceback(i,s[i][j]);
    Traceback(s[i][j]+1,j);
    cout<<"Multipy A"<<i<<","<<s[i][j];
    cout<<" and A"<<(s[i][j]+1)<<","<<j<<endl;
}
int main()
{
   MemoizeMatrixChain(6);
   cout<<m[1][6]<<endl;;
   Traceback(1,6);
   return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值