最优化理论——牛顿-最速下降混合算法

最优化理论——牛顿-最速下降混合算法

算法

引言

牛顿法要求目标函数的Hess矩阵 G ( x ) = ▽ 2 f ( x ) G(x)=\bigtriangledown^2f(x) G(x)=2f(x) 在每个迭代点 x k x_k xk 处是正定的,否则,难以保证牛顿方向 d k = − G k − 1 g k d_k=-G_k^{-1}g_k dk=Gk1gk f f f x k x_k xk处的下降方向。为克服这一缺陷,可对牛顿法进行修正,修正的途径之一就是将牛顿法和最速下降法结合起来,构造“牛顿-最速下降混合算法”

算法思想

▽ 2 f ( x ) \bigtriangledown^2f(x) 2f(x) 正定时,采用牛顿方向作为搜索方向;否则,若 ▽ 2 f ( x ) \bigtriangledown^2f(x) 2f(x) 奇异,或者虽然非奇异,但牛顿方向不是下降方向,则采用负梯度方向作为搜索方向。

算法步骤

在这里插入图片描述

算法代码

Matlab代码如下(由阻尼牛顿法修改而来,不保证绝对正确,若有错欢迎指正):

function [x,val,k]=gradnm(fun,gfun,Hess,x0)
%功能: 用牛顿-最速下降混合算法求解无约束问题:  min f(x)
maxk=100;  %给出最大迭代次数
rho=0.55;sigma=0.4;
k=0;  epsilon=10^(-5);
while(k<maxk)
    gk=feval(gfun,x0); %计算梯度
    Gk=feval(Hess,x0);  %计算Hesse阵
    dk=-Gk\gk; %解方程组Gk*dk=-gk, 计算搜索方向
    if((gk'*dk)<0)
        dk=-Gk\gk;%牛顿下降方向
    else
        dk=-gk;%最速下降方向
    end
    if(norm(gk)<epsilon), break; end  %检验终止准则
    m=0; mk=0;
    while(m<20)   % 用Armijo搜索求步长 
        if(feval(fun,x0+rho^m*dk)<feval(fun,x0)+sigma*rho^m*gk'*dk)
            mk=m; break;
        end
        m=m+1;
    end
    x0=x0+rho^mk*dk;
    k=k+1;
end
x=x0;
val=feval(fun,x); 

示例

3.编写牛顿—最速下降混合算法的Matlab程序,并求解无约束优化问题
m i n f ( x ) = 4 x 1 2 + x 2 2 − x 1 2 x 2 minf(x)=4x_1^2+x_2^2-x_1^2x_2 minf(x)=4x12+x22x12x2
该问题的初始点取x=(1,1)T, ϵ = 1 0 − 5 \epsilon =10^{-5} ϵ=105,记录前20次迭代点列.

fun1函数文件:

function f=fun1(x)
f=4*x(1)^2+x(2)^2-x(1)^2*x(2);

gfun1函数文件:

function gf=gfun1(x)
gf=[8*x(1)-2*x(1)*x(2), 2*x(2)-x(1)^2]';

Hess1函数文件:

function He=Hess1(x)
n=length(x);
He=zeros(n,n);
He=[8-2*x(2), -2*x(1); -2*x(1),2];

交互界面输入:

x=[1,1]'
[x,val,k]=gradnm('fun1','gfun1','Hess1',x)

结果:

初始点最优点x迭代次数k目标函数值f(x)
(1,1)T(0.0326,-0.2196)T*1.0e-0535.2496e-12
  • 3
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值