最长公共子序列(LCS)——动态规划

本文详细介绍了最长公共子序列(LCS)的概念,并通过两个示例,包括一个简单的ABCB和BDCA的例子以及一个更复杂的序列对比,展示了如何使用动态规划方法求解LCS,解释了在不同情况下的填充规则和如何回溯找到具体的LCS。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最长公共子序列(LCS)

子序列(subsequence): 一个特定序列的子序列就是将给定序列中零个或多个元素去掉后得到的结果(不改变元素间相对次序)。
给定的字符序列: {a,b,c,d,e,f,g,h},它的子序列示例: {a,c,e,f} 即元素b,d,g,h被去掉后,保持原有的元素序列所得到的结果就是子序列。同理,{a,h},{c,d,e}等都是它的子序列。在这里插入图片描述

一个简单的例子

(以求ABCB和BDCA的LCS长度为例)
在这里插入图片描述
第一行和第一列初始化都为0
在这里插入图片描述
A和B不相等,所填值为左方和上方最大的那个
在这里插入图片描述
A和B不相等,所填值为左方和上方最大的那个
在这里插入图片描述
A和C不相等,所填值为左方和上方最大的那个
在这里插入图片描述
A和A相等,所填值为左上方的值+1

以此类推,得出结论
在这里插入图片描述
右下角的值即为LCS的长度
倒退回去LCS={B,C}

一个复杂的例子

以s1={1,3,4,5,6,7,7,8},s2={3,5,7,4,8,6,7,8,2}为例
在这里插入图片描述
然后,一行一行地从上往下填:
在这里插入图片描述
3和3相等,所填值为左上方的值+1;

第四行填入:
在这里插入图片描述
第五行填入:
在这里插入图片描述
第六行填入:
在这里插入图片描述
以此类推,得到结果:
在这里插入图片描述
可知LCS的长度为5
倒退回去可得:
在这里插入图片描述
LCS={3,4,6,7,8}

如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 这种存在分支的情况,选择另一个方向,会得到另一个结果。
在这里插入图片描述
LCS={3,5,7,7,8}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值