Acwing 846-树的重心

这篇博客讲解了如何利用深度优先搜索算法确定一棵树的重心,即删除该点后能使得剩余连通块中点数差距最小的节点。通过示例代码演示了如何计算并输出删除重心后的最大连通块点数。

题目:

给定一颗树,树中包含 n 个结点(编号 1∼n)和 n−1 条无向边。

请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。

重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。

输入格式

第一行包含整数 n,表示树的结点数。

接下来 n−1 行,每行包含两个整数 a 和 b,表示点 a 和点 b 之间存在一条边。

输出格式

输出一个整数 m,表示将重心删除后,剩余各个连通块中点数的最大值。

数据范围

1≤n≤1e5

输入样例: 

9
1 2
1 7
1 4
2 8
2 5
4 3
3 9
4 6

 输出样例:

4
#include<bits/stdc++.h>

using namespace std;

const int N=1e5+10;

int n;

vector<int> G[N];
bool vis[N];
int ans=N;

//以u为根的子树中点的数量
int dfs(int u)
{
    vis[u]=true;

    int sum=1,res=0;
    for(auto i : G[u])
    {
        if(!vis[i])
        {
            int s=dfs(i);
            res=max(res,s);
            sum+=s;
        }
    }

    res=max(res,n-sum);

    ans=min(res,ans);
    return sum;
}

int main()
{
    ios::sync_with_stdio(false);
    cin>>n;
    int x,y;
    for(int i=1;i<n;i++)
    {
        cin>>x>>y;
        G[x].push_back(y);
        G[y].push_back(x);
    }
    dfs(1);
    cout<<ans<<endl;
    return 0;
}

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值