题目:
给定一颗树,树中包含 n 个结点(编号 1∼n)和 n−1 条无向边。
请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。
重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。
输入格式
第一行包含整数 n,表示树的结点数。
接下来 n−1 行,每行包含两个整数 a 和 b,表示点 a 和点 b 之间存在一条边。
输出格式
输出一个整数 m,表示将重心删除后,剩余各个连通块中点数的最大值。
数据范围
1≤n≤1e5
输入样例:
9
1 2
1 7
1 4
2 8
2 5
4 3
3 9
4 6
输出样例:
4
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int n;
vector<int> G[N];
bool vis[N];
int ans=N;
//以u为根的子树中点的数量
int dfs(int u)
{
vis[u]=true;
int sum=1,res=0;
for(auto i : G[u])
{
if(!vis[i])
{
int s=dfs(i);
res=max(res,s);
sum+=s;
}
}
res=max(res,n-sum);
ans=min(res,ans);
return sum;
}
int main()
{
ios::sync_with_stdio(false);
cin>>n;
int x,y;
for(int i=1;i<n;i++)
{
cin>>x>>y;
G[x].push_back(y);
G[y].push_back(x);
}
dfs(1);
cout<<ans<<endl;
return 0;
}
这篇博客讲解了如何利用深度优先搜索算法确定一棵树的重心,即删除该点后能使得剩余连通块中点数差距最小的节点。通过示例代码演示了如何计算并输出删除重心后的最大连通块点数。
5921

被折叠的 条评论
为什么被折叠?



