欧拉函数

欧拉函数

欧拉函数作用

对于一个正整数n,求小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。
在这里插入图片描述
其中pi是n的质因数,n是不为0的整数,φ(1) = 1。

代码

#include <bits/stdc++.h>
using namespace std;
//#include <stdio.h>
//#include <stdlib.h>
//#include <string.h>
#define ll long long
#define N 1000010
const int mod = 1e9 + 7;
//欧拉函数
/* 特性:
1.若a为质数,phi[a] = a - 1;
2.若a为质数,b mod a = 0, phi[a * b] = a * phi[b];
3.若a, b互质,phi[a * b] = phi[a] * phi[b](当a为质数时,如果b mod a != 0, phi[a * b] = phi[a] * phi[b])
*/
int primes[N], cnt;
bool st[N];
int phi[N];
ll get_eulers(int n) {
    phi[1] = 1;
    for (int i = 2; i <= n; i++) {
        if (!st[i]) {// i为素数
            primes[cnt++] = i; // 将i加入素数数组primes中
            phi[i] = i - 1; // 因为i是素数,特性一
        }
        for (int j = 0; primes[j] <= n / i; j++) { // 用当前已得到素数数组,筛去primes[j] * i
            st[primes[j] * i] = true; // 可以确定i * primes[j] 不是素数
            if (i % primes[j] == 0) { //判断i和primes[j] 是否互质
                phi[primes[j] * i] = phi[i] * primes[j]; // 特性二
                break;
            }
            else phi[primes[j] * i] = phi[i] * (primes[j] - 1); // 特性三
        }
    }
    ll res = 0;
    for (int i = 1; i <= n; i++) res += phi[i];
    return res;
}
int main() {
    int n;
    cin >> n;
    cout << get_eulers(n) << endl;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值