一、线性dp
(1)数字三角形
找到从上到下的最大路径,每次有两种情况,从左上将最大值传下来,从右上将最大值传下来。
f[i][j] = max(f[i - 1][j - 1] + a[i][j], f[i - 1][j] + a[i][j]);
(2)最长上升子序列
for(int i = 1; i <= n; i ++)
{
f[i] = 1;
for(int j = 1; j < i; j ++)
{
if(a[j] < a[i])
f[i] = max(f[i], f[j] + 1);
}
}
#include <bits/stdc++.h>
#define x first
#define y second
using namespace std;
const int N = 2e5 + 10;
//最长上升子序列进阶
int n;
int a[N];
int q[N];
int main()
{
cin >> n;
for(int i = 0; i < n; i ++) cin >> a[i];
int len = 0;
q[0] = -2e9;
for(int i = 0; i < n; i ++)
{
int l = 0, r = len;
while(l < r)
{
int mid = l + r + 1 >> 1;
if(q[mid] < a[i]) l = mid;
else r = mid - 1;
}
len = max(len, r + 1);
q[r + 1] = a[i];
}
cout << len << endl;
}
(3)最长公共子序列
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
if(a[i] == b[j]) f[i][j] = max(f[i - 1][j - 1] + 1, f[i][j]);
#include <bits/stdc++.h>
#define x first
#define y second
using namespace std;
const int N = 2e3 + 10;
//给出两个字符串,把a转换成b需要至少多少操作,有三个操作可以选择,删除一个字母,增加一个字母,改变一个字母。
int n, m;
char a[N], b[N];
int f[N][N];
int main()
{
cin >> n >> a + 1;
cin >> m >> b + 1;
for(int i = 0; i <= m; i ++) f[0][i] = i;//当用a的前0个字母和b的前i个字母匹配时,需要在a加上i个字母。
for(int i = 0; i <= n; i ++)
f[i][0] =
i; //当用a的前i个字母和b的前0个字母匹配时,需要在a减去i个字母。
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= m; j ++)
{
f[i][j] = min(f[i - 1][j] + 1, f[i][j - 1] + 1);
if(a[i] == b[j]) f[i][j] = min(f[i][j], f[i - 1][j - 1]);//如果相等,不用操作。
else f[i][j] = min(f[i][j], f[i - 1][j - 1] + 1);//如果不相等需要修改。
}
cout << f[n][m] << endl;
}