SDU CS 期末考回忆版合集
删除原有分散的版本,合订起来画个。
包括:机器学习、算法、图形学、操作系统、编译原理、软件工程、大数据分析管理、计算机体系结构等
2021 SDU机器学习期末考试
2019 计科
一、线性回归+牛顿法
给出了线性回归的Loss Function
- 证明Hessian = XTXX^TXXTX
- 证明牛顿法一次迭代结果 和 正规方程求解结果一样 θ=(XTX)−1XTY\theta=(X^TX)^{-1}X^TYθ=(XTX)−1XTY
- 证明正则化的线性回归,用牛顿法一次迭代和正规方程求解结果一样
二、计算题 NaiveBayesNaive BayesNaiveBayes
给了一个表 类似于下表
| A | 0 | 1 | ||||||
|---|---|---|---|---|---|---|---|---|
| B | 0 | 1 | ||||||
| C | 0 | 1 | ||||||
| Y | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
问 当A=0 B=0 C=1时Naive BayesNaive\, BayesNaiveBayes输出y是多少
三、Soft Margin SVM
- 给了soft Margin SVM的问题模型,但是没有ξi>=0\xi_i>=0ξi>=0 的约束,说明加不加约束都不影响目标函数的最优值,目标函数就是Soft Margin SVMSoft \,\, Margin \,\,SVMSoftMarginSVM的目标函数
- 求KKT条件
- 求拉格朗日对偶问题
四、EM算法
给出了EM算法的基本步骤的公式,给了GEM的思想(类似于EM)

这篇文章汇总了SDUCS的多门课程期末考试的重点内容,包括机器学习的线性回归与牛顿法,算法的BFS、DFS、Floyd算法和最大流最小割问题,操作系统的进程切换、死锁处理,图形学的Bresenham算法、Z-buffer和光照模型,编译原理的词法分析、LL(1)和LR分析,大数据管理的HDFS、HBase和Hive应用,以及软件工程的软件开发模型和重构概念。同时,提到了各科目复习的建议和对课程的评价。
最低0.47元/天 解锁文章
842






