一个排列中任意两个元素对换,排列改变奇偶性。
非常简单的证明
过程:
一、相邻两元素对换
对于排列a1a2a3a4a5,
对换a3和a4,
形成排列a1a2a4a3a5,
其它元素与a3和a4的次序不变,
比如不管a3和a4交换还是不交换,
a1都在这两元素的前面,a5都在这两元素的后面。
只有a3和a4的次序交换,
此时逆序数要么加1,要么减1,
即排列改变奇偶性。
二、任意两元素交换
对于排列a1a2a3a4a5,
对换a1和a5,
首先将a1与a2、a3、a4分别交换,
形成排列a2a3a4a1a5,
一共交换了3次,对于其他排列,可能交换了4次,5次,
总之,记这个数为m次。
在将a1和a5交换,
形成排列a2a3a4a5a1,
又交换了一次。
再将a5与a4、a3、a2分别交换,
形成排列a5a2a3a4a1,
此时又交换了3次,也就是m次。
此时交换完成,总共交换了2m+1次。
所以不管m是多少,最后都是交换奇数次。
也就是会改变排列的奇偶性。