- 博客(145)
- 收藏
- 关注
原创 相关系数对二维正态分布图像的影响
如果把μ1μ2μ1μ2和σ12σ22σ12σ22对图像的影响加入进来,讨论要复杂一些,但是ρ\rhoρ对图像的影响的基本方向不会变,有集中程度和对称中心两方面的影响。其实μ1μ2μ1μ2也不过是把图像的对称中心从00(0,0)00转移到了μ1μ2μ1μ2,而σ1σ2σ1σ2若是不相等,就是ρ0\rho = 0ρ0时的圆环状散点图会变成椭圆环状散点图,之后将ρ。
2023-12-01 12:16:42 2096
原创 用分布函数定义的随机变量的独立性的合理性
由事件的独立性到随机变量的独立性,从分布函数到密度函数,直观上非常容易记忆,但是这里面其实是由细微的差异的,注意到这些细微的差异,对于构建严格的逻辑闭环,扎实数学的地基有一定作用。
2023-11-30 13:18:19 1402
原创 导数的介值定理(达布定理)
导数的两大特性:导数的介值性(达布定理)。导数无第一类间断点。1. 达布定理(导数介值定理)若函数 fff 在 [a,b] 上可导,且 f+′(a)≠f−′(b)f_+'(a) \neq f_-'(b)f+′(a)=f−′(b),kkk 为介于 f+′(a), f−′(b)f_+'(a) ,\ f_-'(b)f+′(a), f−′(b) 之间的任一实数,则至少存在一点 ξ∈(a,b)\xi \in (a,b)ξ∈(a,b),使得 f′(ξ)=kf'(\xi) =
2023-07-12 19:05:42 14896
原创 为什么配方法化二次型为标准型一定可以做到可逆线性变换
那么现在问题来了,该变换矩阵是上三角矩阵是显然的,但是万一有的行的主元是0呢,这样得到的矩阵岂不是不满秩了吗?所以,我们同样得到了一个可逆线性变换,只不过是在主元为 0 的那些行做了特殊取值。综合以上三种情况,我们不难看出,配方法一定可以找到可逆线性变换,化二次型为标准型。这个变换矩阵是一个主对角线元素全部不为 0 的上三角矩阵,它显然是可逆的,所以。先利用平方差构造出一个平方项,然后在逐次配方,也可以得到一个可逆线性变换。的地位是对等的,所以我们可以先对系数不为 0 的。项的系数看成 0 ,也就是。
2023-06-05 22:10:52 5146
原创 证明正定矩阵的充要条件:全部顺序主子式大于0
由此我们可以得到,在假设对于n-1阶矩阵结论成立的情况下,能够推出对于n阶矩阵结论仍然成立,又对于1阶矩阵结论显然是成立的。根据假设,对于任意n-1阶矩阵,全部顺序主子式大于0能够得到该矩阵正定,所以。是对称矩阵,这是研究二次型的必然要求,将二次多项式转换成。的行列式为该矩阵的元素值,该矩阵的顺序主子式只有1个,即。,即正定矩阵的所有特征值全大于0,自然,行列式的值。的形式的时候,交叉项的系数可以全部是对称的),由于。,该矩阵的行列式大于 0 时,自然有对任意。假设:对任意的 n - 1 阶矩阵,结论“
2023-06-05 09:27:46 11589 2
原创 实对称矩阵必可相似对角化的证明
是什么:首先矩阵A的image就是,矩阵A所有列向量的线性组合,也就是A的列空间。然后,矩阵A的kernel就是,矩阵Ax=0的解集(齐次方程组全部的解),也就是A的零空间。事实上,这个证明不仅证明了实对称矩阵必可相似对角化,还证明了实对称矩阵必可以使用正交矩阵相似对角化。必为实数,它对应的特征向量也是实数,所以可以找到它对应的特征向量中的一个单位向量。的列空间和零空间中的向量是相互正交的,肯定不线性相关,所以它们的交集自然是空集。实对称矩阵的特征值都是实数。是实对称矩阵,显然有。同解,而对于实对称矩阵,
2023-05-23 18:51:20 7157
原创 矩阵特征值之和为主对角元素之和的证明
根据矩阵行列式的定义,选取不同行不同列的元素作为一个乘积项,除了所有元素都是对角线元素的乘积项,其它的乘积项只可能使得。同一个行列式的特征多项式,
2023-05-22 10:08:09 1684 1
原创 矩阵乘积的行列式等于各自行列式的乘积
假如矩阵 A 不可逆,则 A 可以看作由最后一行全为0的最简阶梯矩阵经过一系列的变换得到。用这个最简阶梯矩阵左乘矩阵B,自然得到的矩阵最后一行也全为0,它不可逆,行列式为0,再经过同样的一系列的行变换也不会再改变行列式为0的值,即。施加这3种变换,对其行列式的影响分别是:乘 1, 乘 -1, 乘 c。,或者最后一行为零行的方阵开始,经过一系列行变换形成。为了回答这个问题,需要我们逆向思考——对它进行。, 也就是经过一系列行变换,使它变成。这说明所有方阵,都可以从单位矩阵。A、B都是n阶方阵,有。
2023-05-10 23:43:49 3347
原创 一个全排列中任意两个数交换位置,该全排列的逆序数的奇偶性将发生改变
会导致 k-A 个逆序减少,但是会新增加 A 个逆序,即这一步总的逆序数变化量为 A - ( k - A) = 2 A - k。会导致 k-B 个逆序减少,但是会新增加 B 个逆序,即这一步总的逆序数变化量为 B - (k - B) = 2 B - k。所以,全排列中任意两个数交换位置,该全排列的逆序数的奇偶性将发生改变。所导致的逆序数的变化量为 2(A+B) - 2k,这肯定是个偶数。本身交换导致的,它要么是+1要么是-1。小的数就有 k - A 个,移动。大的数就有 k- B 个,移动。
2023-05-09 14:44:43 1658 1
原创 《C++ Primer Plus》第18章:探讨 C++ 新标准(3)
新增默认移动构造和默认移动赋值、=default\=delete、委托构造函数、继承构造函数、override\final。
2023-03-02 14:13:46 357
原创 《C++ Primer Plus》第18章:探讨 C++ 新标准(1)
新类型统一的初始化声明智能指针异常规范方面的修改作用域内枚举对类的修改模板和 STL 方面的修改右值引用
2023-03-01 12:15:04 328
原创 《C++ Primer Plus》第16章:string类和标准模板库(9)
函数对象,函数符,预定义的函数符,自适应的函数符和 函数适配器binder1st\binder2nd
2023-02-10 10:37:37 297
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人