题目
列表 arr 由在范围 [1, n] 中的所有整数组成,并按严格递增排序。请你对 arr 应用下述算法:
- 从左到右,删除第一个数字,然后每隔一个数字删除一个,直到到达列表末尾。
- 重复上面的步骤,但这次是从右到左。也就是,删除最右侧的数字,然后剩下的数字每隔一个删除一个。
- 不断重复这两步,从左到右和从右到左交替进行,直到只剩下一个数字。 给你整数 n ,返回 arr 最后剩下的数字。
示例
示例 1:
输入:n = 9
输出:6
解释:
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9]
arr = [2, 4, 6, 8]
arr = [2, 6]
arr = [6]
示例 2:
输入:n = 1
输出:1
方法
模拟
class Solution {
public int lastRemaining(int n) {
int a1 = 1;
int k = 0, cnt = n, step = 1;
while (cnt > 1) {
if (k % 2 == 0) { // 正向
a1 = a1 + step;
} else { // 反向
a1 = (cnt % 2 == 0) ? a1 : a1 + step;
}
k++;
cnt = cnt >> 1;
step = step << 1;
}
return a1;
}
}
每个循环将数组间隔删除的过程,其实是等差数列,差值翻倍的过程。
模拟每次间隔删除的过程,则每次删除后数组长度都要除2并向下取整
对于数组的第一个元素,如果是正向的,则会变成 a1 + step,其中step是等差数列的差值,每次删除后,差值都会扩大为原来的两倍。
如果是反向删除,且数组长度为偶数,则第一个元素不会删除,如果是奇数则被删除,且变为 a1 + step。
每次循环k记录从左还是从右删除,cnt为当前数组个数,step为当前的等差值。
为了节省空间,全程只需要跟踪第一个元素的变化,当数组长度为1时退出循环,第一个元素也就是最后的唯一元素。