YOLO通过将图像划分成网格,并在每个网格单元中预测边界框和类别概率,能够在一次前向传播中同时获得所有边界框的位置和类别信息。这种设计使得YOLO在处理速度和实时性方面表现出色,适用于各种实际应用场景,如自动驾驶、视频监控等。
摘要
旨在实现一种自动化数据驱动的乳房 X 线照片乳腺癌检测模型,以支持医生在乳腺癌筛查或检测计划中的决策过程。公开的 CBIS-DDSM 和 INbreast 数据集被用作在全视野数字乳房 X 线照片专有数据集上实现迁移学习技术的来源。
专有数据集反映了一个真实的异构案例研究,包括 190 个肿块、46 个不对称和 71 个扭曲。比较了几种 Yolo 架构,包括 YoloV3、YoloV5 和 YoloV5-Transformer。此外,实施了 Eigen-CAM 进行模型自省,并通过突出显示乳房 X 线照片内所有可疑的感兴趣区域来输出解释。
小型 YoloV5 模型产生了最佳开发解决方案,在专有数据集上获得了 0.621 的 mAP。
通过 Eigen-CAM 计算的显着性图已被证明是一种能够报告所有感兴趣区域的解决方案,即使在错误的预测情况下也是如此。Eigen-CAM 可大幅降低假阴性发生率,但假阳性发生率会有所增加。尽管专有数据集上存在难以识别的异常,例如不对称和扭曲,但经过训练的模型仍表现出令人鼓舞的检测能力。
1. 介绍
假阳性和假阴性的问题仍然存在。大多数这些错误可以归因于致密的乳房(掩蔽效应),以及人为因素,例如放射科医生的感知和错误的决策行为。此外,肿瘤固有的成像特性也是造成这一问题的原因之一,良性肿块通常类似于恶性肿块,而恶性肿块有时模仿良性肿块。在乳腺癌诊断过程中,医生的目标是检测整个乳房 X 光检查中的所有感兴趣区域 (ROI):肿块、钙化、扭曲等。在疾病早期进行检测对于规划新的检查、治疗或干预措施至关重要。另一方面,漏检可能会给患者造成不可逆转的伤害。
文献中提出的几种解决方案并非旨在分析整个图像,而是将检测限制在块分类上:首先手动选择和裁剪 ROI,然后训练分类器以区分裁剪。但是,为了支持和模仿医生的诊断过程,需要一种能够检测整个乳房 X 光片内所有 ROI 的架构。
Faster R-CNN、RetinaNet 和 Yolo 促进了乳腺癌检测系统的发展 [4–7]。这些框架无疑带来了两个主要困难:(1)模型必须学习整个乳房 X 光片的特征,训练所需的图像大小调整可能会导致关键细节的丢失;(2)由于模型必须检测所有健康组织块(即非 ROI)中的所有 ROI,因此不可避免地会出现错误率增加的情况。然而,Yolo 已被证明在众多场景中是一款出色的工具,其准确率和推理速度都高于其他物体检测器竞争对手 [8]。
在 [9] 中,使用 CBIS-DDSM 和 INbreast 数据集对 YoloV5 纳米、小型、中型和大型模型进行了比较和评估。此外,尚未研究使用 YoloV3 等更深层次的架构是否可以在小型数据集的情况下提高检测性能。此外,考虑到它们的泛化能力,将 Transformer 块合并到 Yolo 中的潜在优势尚未被研究。在这项工作中,提出了一种基于 YoloV5 的乳腺癌检测模型,以支持医生的诊断过程。对 YoloV3 [10] 中提出的其他特征提取器(如 Darknet53)和 Vision Transformer [11] 进行了比较。
1.1 数据集
利用预训练使用小数据集进行训练代表了未来的发展方向,可以提供支持医学领域认知和决策过程的可信系统 [13]。因此,CBIS-DDSM [14] 和 INbreast [15] 数据集被用作源数据集,专有数据集被用作目标数据集。与 CBIS-DDSM 和 INbreast 相比,专有数据集包括更难识别的病变,例如不对称和扭曲,这些病变具有重要的临床意义 [16]。 专有数据集是在大学医院“Paolo Giaccone”(意大利巴勒莫)的放射科获取和注释的。所执行实验的工作流程如图 所示。
CBIS-DDSM 数据集被用作源,在 INbreast 目标数据集上评估几种基于 Yolo 的架构(YoloV3、YoloV5(n、s、m、l)和 YoloV5-Transformer)。然后,使用训练最佳的架构(YoloV5s)在专有数据集上进行质量检测。在训练阶段之前以及训练期间执行了数据增强程序以平衡类别。输出包括边界框预测和突出显示乳房 X 光检查内所有 ROI 的热图。
1.2 可解释性问题
无梯度方法 Eigen-CAM [20] 用于显著图计算,并与遮挡敏感度方法进行了比较。显著图用于验证学习模型并突出显示预测过程中涉及的最重要的像素。
以热图形式报告区域比 ROI 预测更能引导医生的注意力:ROI 仅在某个置信度阈值以上才会预测和显示,而最难找到的区域可能不会超过此阈值。这样,通过引导医生对不同ROI的关注,就可以支持复杂、繁琐和令人精疲力尽的乳房X光检查评估过程。
1.3 创新点
1.3.1 创新点 1
虽然数据驱动的方法在各种医疗场景中都表现出了高性能,但它们缺乏透明度,导致医生和患者都对这些新技术持怀疑态度。这种怀疑在临床决策支持系统 (CDSS) 的开发中尤为突出,因为 了解决策过程和确保系统可靠性是促进诊断过程的关键先决条件。传统的机器学习方法不足以满足这些需求,也无法为系统做出的决策提供依据。引入乳腺癌检测的可解释性至关重要,因为乳房 X 线摄影筛查有可能早期发现侵袭性疾病。很多时候,这些病变可能并不明显,可能无法达到 Yolo 中设定的置信度阈值以返回检测结果。
相反,无梯度 XAI(可解释人工智能) 方法可以不受最终输出的影响,并且可以在诊断过程中提供有价值的帮助,即使在涉及不准确或低置信度预测的情况下也是如此。显著性图被认为是增强 YoloV5 预测能力的有力工具。
1.3.2 创新点 2
从意大利巴勒莫大学医院“Paolo Giaccone”的放射科获取了一个专有数据集,用于模型评估。与 CBIS-DDSM 和 INbreast 不同,该数据集包含一个真实的临床数据集,其中包含大量病变,这些病变在识别方面更为复杂,包括不对称和扭曲。这些具有挑战性的病例具有重要的临床意义 [16]。此外,训练过程涉及使用三个数据集,使最终模型能够整合从 CBIS-DDSM 和 INbreast 数据集获得的知识。