ChatGLM-6B实战微调(P-tuning-v2、LORA)
LoRA核心思想是在原始预训练语言模型旁边增加一个旁路,做一个降维再升维的操作,来模拟所谓的 intrinsic rank(预训练模型在各类下游任务上泛化的过程其实就是在优化各类任务的公共低维本征(low-dimensional intrinsic)子空间中非常少量的几个自由参数)。在推理时,将左右两部分的结果加到一起即可,h=Wx+ABx=(W+AB)x,所以,只要将训练完成的矩阵乘积AB跟原本的权重矩阵W加到一起作为新权重参数替换原始预训练语言模型的W即可,不会增加额外的计算资源。
原创
2024-04-07 10:55:48 ·
1496 阅读 ·
1 评论