Langchain大语言模型开发教程
文章平均质量分 76
是饿梦啊
喜欢算法,喜欢东野圭吾
展开
-
【Langchain大语言模型开发教程】基于Langchain的私人助手
终于学习完了Langchain框架的核心内容,最后基于langchain技术实现一个个人知识库助手的小项目,将这些内容串联起来,在实际中进行应用。1、langchain框架2、chroma向量数据库3、embedding模型(bge-large-zh-v1.5、bge-large-en-v1.5)4、rerank模型(bge-reranker-v2-m3)5、gradio前端框架6、LLM(GLM4系列模型)我们使用langchain提供的文本加载器来进行各种类型数据的加载;原创 2024-08-05 22:47:09 · 1247 阅读 · 0 评论 -
【Langchain大语言模型开发教程】代理
我们自定义乘法工具、加法工具和指数工具,然后我们初始化一个python解释器工具、搜索工具和维基百科检索工具;我们再用一下这个duckduckgosearch这个工具,问一个计算机考研408都包含那些内容;我们从langchain提供的这个网站中获取一个已经写好的prompt;一开始它去查了维基百科发现没有,然后用了duckduckgosearch;我们先来一个数学问题:把3的五次方乘以12加3的和,然后把整个结果平方。我们创建一个agent和一个agent执行器;初始化我们的大语言模型;原创 2024-07-25 16:06:53 · 390 阅读 · 0 评论 -
【Langchain大语言模型开发教程】评估
这里我们打印一下这个生成的example,发现是一个列表长下面这个样子;4、初始化一个LLM并创建一个RetrievalQ链;让大语言模型对实际答案和预测答案进行对比并给出一个评分;让大语言模型来为我们每个example来生成答案;我们再次执行来查看chain中的细节;那我们是不是可以使用语言模型来评估呢;3、创建向量数据库(内存警告⚠);最后,我们可以打印一下看看结果;所以这里我们需要进行一步提取;1、引包、加载环境变量;我们初始化一个评估链;原创 2024-07-24 15:54:34 · 659 阅读 · 0 评论 -
【Langchain大语言模型开发教程】基于文档问答
该chain包含三个主要的参数,其中llm参数是我们的智谱GLM4, retriever参数设置设置为前面我们由DocArrayInMemorySearch创建的retriever,最后一个重要的参数为chain_type,该参数包含了四个可选值:stuff,map_reduce,refine,map_rerank,接下来我们简单了解一下这些选择的区别;刚刚我们输入了一个问题并在向量数据库中检索到了一些相关信息,接下来我们将这些信息和问题一起输入到大语言模型中,使用markdown的格式展示一下效果;原创 2024-07-21 19:17:37 · 834 阅读 · 0 评论 -
【Langchain大语言模型开发教程】链
当我们的任务可能更加复杂的时候,我们可能就需要一个路由链,来帮我们路由到一个特定的子链上。这里,我们定义了物理,数学,历史,计算机科学的prompt template。我们可以输入不同的question,然后追踪一下我们选择了那个prompt。这里我们的GLM4的输出和GPT就不太一样了,这里给出了很多的选择。我们实例这个单一顺序链 ,执行以下,这里的效果和gpt差的还是有一些。这里我们定义两条链,他们是一个顺序执行的关系。接下来我们定义一个目标链 和默认链。我们初始化我们的这个顺序链。原创 2024-07-20 16:19:29 · 432 阅读 · 0 评论 -
【Langchain大语言模型开发教程】记忆
同理哈,这个函数的作用就是,我们会将历史的对话信息进行总结然后存在我们的记忆单元中,由于这里同样涉及到token的计算,所以这里也是无法正常运行的了。"},构建一个对话模型 (verbose设置为true可以查看到我们历史的一些信息)llm=llm,尝试进行提问")原创 2024-07-20 11:51:55 · 1136 阅读 · 0 评论 -
【Langchain大语言模型开发教程】模型、提示和解析
2、 使用Langchain的模板功能,将需要改动的部分抽象成变量,在具体的情况下替换成需要的内容,来达到模板复用效果。我们打印他的类型的时候,发现这其实是一个字符串类型,这是不能根据key来获取value值的。来作为我们的基座大模型,通过langchain的chatOpenAI接口来实例化我们的模型。3、使用Langchain提供的解析功能,将LLM的输出解析成你需要的格式,如字典。我们现在获得了某个商品的用户评价,我们想要提取其中的关键信息(下面这种形式)这里我们给出一个回复的内容和转化的格式。原创 2024-07-19 20:16:26 · 665 阅读 · 0 评论