建立合法的表达式字符串只含二元操作符的非空表达式数
用二叉树遍历算法求该中缀表达式对应的后缀,前缀表达式
/*
建立合法的表达式字符串只含二元操作符的非空表达式数
用二叉树遍历算法求该中缀表达式对应的后缀,前缀表达式
*/
#include "stdio.h"//包含 getchar() scanf() printf()
#include "malloc.h"//malloc()动态申请空间 函数
//二叉树 结点
struct node{
char data;
struct node *lchild,*rchild;
}bnode;
typedef struct node * blink;
//中缀 建立 二叉数 (这里 采用 括号 来识别 表达式 优先层级,最外层也需要加括号)
//递归实现
static int i = 0;//标记 数组中 下一个 要处理的 元素,静态变量 会继承上一次调用的值
blink create_binary(char s[])
{
char ch = s[i];//保存 本次 调用 要处理 的元素
//构建结点
blink bt;
bt = (blink)malloc(sizeof(bnode));
bt->data = '\0';
bt->lchild = NULL;
bt->rchild = NULL;
//ch保存后,算作处理完毕 跳过 1中的左括号(不处理),或者跳过 2中的数据,无论那种 都得+1
i ++;
//开始 真正处理 ch保存的元素
if(ch == '(')//如果ch保存的 元素 是'(' -----------1
{
bt->lchild = create_binary(s);//处理 操作符的左子树----左
bt->data = s[i];//保存 操作符 为局部的 根 ----根
i ++;//向后移动 处理下一个 元素
bt->rchild = create_binary(s);//处理 操作符的右子树---右
i ++;//处理完毕 跳过 结束的右括号(不处理)
}
else//如果ch保存的 元素 是一个 值,直接赋值---------2
{
bt->data = ch;
}
/* 输入 ((4-5)*(1+2))
*
- +
4 5 1 2
*/
return bt;
}
//中序 遍历 中序 注意要 加括号,前缀表达式 后缀 表达式 必须 意思一致
void inorder(blink bt)
{
/*
依照test_one
结果 为 abcdefg(当然这里 也可以发现,中序遍历 二叉排序树实际是 递增序列)
*/
if(bt != NULL)//中序 左根右
{
printf("(");
inorder(bt->lchild); //左
printf("%c",bt->data);//根
inorder(bt->rchild); //右
printf(")");
}
return;
}
//先序遍历
void preorder(blink bt)
{
/*
依照test_one
*/
if(bt != NULL)//中序 左根右
{
printf("%c",bt->data);//根
preorder(bt->lchild); //左
preorder(bt->rchild); //右
}
return;
}
//后序遍历
void postorder(blink bt)
{
/*
依照test_one
*/
if(bt != NULL)//中序 左根右
{
postorder(bt->lchild); //左
postorder(bt->rchild); //右
printf("%c",bt->data);//根
}
return;
}
blink FreeTree(blink T)
{
if(T)
{
FreeTree(T->lchild); //递归释放其左子树
FreeTree(T->rchild); //递归释放其右子树
free(T); //释放根节点
T = NULL; //释放指向根节点的指针
}
return T; //返回释放后的根节点NULL
}
int main()
{
blink root = NULL;//根 结点
char s[50] = {'\0'};
scanf("%s",s);//输入 中缀 表达式
//建树
root = create_binary(s);
//遍历
printf("\n先 中 后序遍历 二叉树\n");
preorder(root);//先序遍历 二叉树
printf("\n");
inorder(root);//中序遍历 二叉树
printf("\n");
postorder(root);//后序 遍历 二叉树
printf("\n");
free(FreeTree(root));//释放 空间
return 0;
}
:如果对中缀表达式构建有疑问,或者对前缀,后缀有兴趣: