Matplotlib基础知识

Matplotlib是数据可视化的基础,可以用来绘制线图、散点图、等高线图、条形图、柱状图、3D 图形、甚至是图形动画等 matplotlib.pyplot是绘制各类可视化图形的命令子库,相当于快捷方式。
  导入方式

import matplotlib.pyplot as plt

  英文释义

英文 汉语
plot n情节;v绘制表格,密谋
grid 网格
tick 标记,刻度
axis
axes 轴的复数形式,坐标系,区域

几个对象的关系
在这里插入图片描述
figure相当于画板,axis就是一幅图的两个轴,axes就是两个轴围成的区域,这个有时也会翻译成坐标系。一个画板可以有多个区域(每个区域上都有对的画),每个区域都对应着两个轴。

一般网上的教程都是直接使用plt.XXX来直接画图,实际上这是一种简便的方式,也容易让人迷糊,plt操作的figure和axes默认是针对当前的figure和axis。这并不容易理解,所以我们就按照fig.XXX和ax.XXX去操作。

基础设置

1、中文显示

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

设置了中文显示之后,负号就不能正常显示了,所以需要加第二行代码。

2、恢复rc设置

plt.rcdefaults()

3、图像显示在窗口中

打开一个窗口显示图片,并且可以缩放图片,还可以保存高清png图片

%matplotlib qt5

4、图像显示在代码区域中

在jupyter notebook中显示在代码区域

%matplotlib inline

一、figure画板

一般来说,我们一次只会生成一个figure,因为这样不容易乱,但也可以同时存在多个figure,需要操作哪个figure就操作哪个,前提是我们在生成figure时,接受了他的返回值,这样就可以随心操作。

但是有一点,生成了figure之后,直接plt.show()是显示不出什么的,因为上面还没有axes,而且plt.show()不是说figure.show(),而是axes或者是其他东西的show()(具体我也不知道),但是现在只生成了一个figure。

生成figure

f1 = plt.figure(num=1)
#返回画布,因为后面要直接对其操作,所以接收这个返回值
f2 = plt.figure(num=2)

还可以在生成figure画板时,设置其大小、分辨率

f3 = plt.figure(num=3, figsize=[3,3], dpi=200, linewidth=3, edgecolor="r", facecolor="y")

figure画板的属性

属性名 含义
num 画板编号
figsize 画板大小(列表),宽、高
dpi 分辨率,(图形每英寸的点数),默认是100
facecolor 画板的颜色,默认白色
linewidth 画板的边的宽度,默认是0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值