二叉树的结构及实现——堆

目录

1.二叉树的顺序结构及实现

1.1二叉树的顺序结构

1.2堆的概念及结构

1.3堆的实现

1.3.1堆向下调整算法

1.3.2堆的创建

1.3.3建堆时间复杂度 

1.3.4堆的插入

1.3.5堆的删除

1.3.6堆的代码实现 

1.4堆的应用

1.4.1堆排序

1.4.2 TOP-K问题


1.二叉树的顺序结构及实现

1.1二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

1.2堆的概念及结构

如果有一个关键码的集合K = { k_{0}k_{1}k_{2} ,…,k_{n-1} },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:k_{i}<=k_{2i+1}  且 k_{i}<=k_{2i+2}(k_{i}>=k_{2i+1}k_{i}>=k_{2i+2}) i = 0,1,2...,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:

         · 堆中某个节点的值总是不大于或不小于其父节点的值;

         · 堆总是一棵完全二叉树。  

1.3堆的实现

1.3.1堆向下调整算法

 现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整 成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

 int array[] = {27,15,19,18,28,34,65,49,25,37};

 

void AdjustDown(Heap* hp, int parent)
{
	int size = hp->size;
	int* array = hp->array;
	//child默认标记parent的左孩子
	//因为:parent如果有孩子,一定先有左孩子再有右孩子
	int child = parent * 2 + 1;
	while (child < size)
	{
		//如果有孩子存在,找parent两个孩子中较小的一个
		if (child + 1 < size&&hp->Compare(array[child+1],array[child]))
		{
			child += 1;
		}
		//检测parent是否满足堆的特性
		if (hp->Compare(array[child],array[parent]))
		{
			Swap(&array[child], &array[parent]);
			//较大的双亲往下移动,可能导致子树不满足堆的特性,继续向下检测
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			return;
		}
	}
}

1.3.2堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

 int a[] = {1,5,3,8,7,6};

void HeapCreate(Heap* hp, DataType* a, int n, PFUNC Compare) 
{
	hp->array = (DataType*)malloc(sizeof(DataType)*n);        
	if (NULL == hp->array)
	{
		assert(0);
		return;
	}
	hp->capacity = n;
	memcpy(hp->array, a, sizeof(DataType)*n);
	hp->size = n;
	hp->Compare = Compare;
	//需要从倒数第一个非叶子结点的位置调整
	for (int root = (n - 2)/2; root >= 0; root--)
	{
		AdjustDown(hp, root);
	}
}

1.3.3建堆时间复杂度 

 因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂   度本来看的 就是近似值,多几个节点不影响最终结果):

因此:建堆的时间复杂度为O(N)。 

1.3.4堆的插入

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。

1.3.5堆的删除

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调 整算法。

1.3.6堆的代码实现 

  heap.h

#pragma once

typedef int DataType;

typedef int(*PFUNC)(int left, int right);
typedef struct Heap
{
	DataType* array;
	int capacity;
	int size;
	PFUNC Compare;
}Heap;

//堆的构建
void HeapCreate(Heap* hp, DataType* a, int n);
//堆的销毁
void HeapDestroy(Heap* hp);
//堆的插入
void HeapPush(Heap* hp, DataType x);
//堆的删除
void HeapPop(Heap* hp);
//获取堆顶元素
DataType HeapTop(Heap* hp);
//堆的数据个数
int HeapSize(Heap* hp);
//堆的判空
int HeapEmpty(Heap* hp);


//测试
void TestHeap();

  heap.c

#include "heap.h"
#include<assert.h>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>

int Less(int left, int right)
{
	return left < right;
}
int Greater(int left, int right)
{
	return left > right;
}


void Swap(DataType* left, DataType * right)
{
	int temp = *left;
	*left = *right;
	*right = temp;
}
//O(logn)
//向下调整(根节点左右子树满足堆的特性)
void AdjustDown(Heap* hp, int parent)
{
	int size = hp->size;
	int* array = hp->array;
	//child默认标记parent的左孩子
	//因为:parent如果有孩子,一定先有左孩子再有右孩子
	int child = parent * 2 + 1;
	while (child < size)
	{
		//如果有孩子存在,找parent两个孩子中较小的一个
		if (child + 1 < size&&hp->Compare(array[child+1],array[child]))
		{
			child += 1;
		}
		//检测parent是否满足堆的特性
		if (hp->Compare(array[child],array[parent]))
		{
			Swap(&array[child], &array[parent]);

			//较大的双亲往下移动,可能导致子树不满足堆的特性,继续向下检测
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			return;
		}
	}
}

void AdjustUp(Heap *hp, int child)
{
	int* array = hp->array;
	int parent = (child - 1) / 2;
	while (child)
	{
		if (hp->Compare(array[child], array[parent]))
		{
			Swap(&array[child], &array[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			return;
		}
	}
}
//堆的构建
void HeapCreate(Heap* hp, DataType* a, int n, PFUNC Compare)  //  HeapCreate(&hp, array, sizeof(array) / sizeof(array[0]), Less);
{
	hp->array = (DataType*)malloc(sizeof(DataType)*n);        
	if (NULL == hp->array)
	{
		assert(0);
		return;
	}
	hp->capacity = n;
	memcpy(hp->array, a, sizeof(DataType)*n);
	hp->size = n;
	hp->Compare = Compare;
	//需要从倒数第一个非叶子结点的位置调整
	for (int root = (n - 2)/2; root >= 0; root--)
	{
		AdjustDown(hp, root);
	}
}

//堆的销毁
void HeapDestroy(Heap* hp)
{
	assert(hp);
	free(hp->array);
	hp->array = NULL;
	hp->capacity = 0;
	hp->size = 0;
}
void CheckHeapCapacity(Heap* hp)
{
	assert(hp);
	if (hp->capacity == hp->size)
	{
		//1.申请空间
		int newCapacity =  hp->capacity*2;
		DataType* temp = (DataType*)malloc(sizeof(DataType)*newCapacity);
		if (NULL == temp)
		{
			assert(0);
			return;
		}
		//2.将原空间的元素拷贝到新空间
		memcpy(temp, hp->array, sizeof(DataType)*hp->size);
		//3.释放旧空间
		free(hp->array);
		hp->array = temp;
		hp->capacity = newCapacity;
	}
}
//堆的插入
void HeapPush(Heap* hp, DataType x)
{
	CheckHeapCapacity(hp);
	hp->array[hp->size] = x;
	hp->size++;
	AdjustUp(hp, hp->size - 1);
}
//堆的删除
void HeapPop(Heap* hp)
{
	if (HeapEmpty(hp))
	{
		return;
	}
	//堆中有元素
	//1.将堆顶元素与堆中最后一个元素交换
	//2.堆中元素个数减1
	//3.将堆顶元素向下调整
	Swap(&hp->array[0], &hp->array[hp->size - 1]);
	hp->size--;
	AdjustDown(hp, 0);

}
//获取堆顶元素
DataType HeapTop(Heap* hp)
{
	assert(hp);
	return hp->array[0];
}
//堆的数据个数
int HeapSize(Heap* hp)
{
	assert(hp);
	return hp->size;
}
//堆的判空
int HeapEmpty(Heap* hp)
{
	assert(hp);
	return 0 == hp->size;
}
void TestHeap()
{
	int array[] = { 49, 65, 27, 34, 19, 28, 18, 15, 25, 37 };
	Heap hp;
	HeapCreate(&hp, array, sizeof(array) / sizeof(array[0]),Less);
	printf("size = %d\n", HeapSize(&hp));
	printf("top = %d\n", HeapTop(&hp));

	HeapPop(&hp);
	printf("size = %d\n", HeapSize(&hp));
	printf("top = %d\n", HeapTop(&hp));
	HeapPush(&hp, 100);
	HeapPush(&hp, 15);
	HeapDestroy(&hp);
}

 

1.4堆的应用

1.4.1堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

1. 建堆

        升序:建大堆

        降序:建小堆

2. 利用堆删除思想来进行排序

 具体实现:

#include <stdio.h>



void Swap(int* left, int* right)
{
	int temp = *left;
	*left = *right;
	*right = temp;
}
void AdjustHeap(int array[], int size,int parent)//堆向下调整
{
	int child = parent * 2 + 1;
	while(child < size)
	{
		if (child + 1 < size&&array[child + 1] > array[child])
			child += 1;
		if (array[parent] < array[child])
		{
			Swap(&array[parent], &array[child]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			return;
		}
	}
	
}
void HeapSort(int array[], int size)
{
	//1.建堆
	int LastNotLeaf = (size - 2) / 2;
	for (int root = LastNotLeaf; root >= 0; --root)
	{
		AdjustHeap(array, size, root);
	}
	//2.利用堆删除思想进行排序
	int end = size-1 ;
	while (end)
	{
		Swap(&array[0], &array[end]);
		AdjustHeap(array,end,0);
		end--;
	}
}

int main()
{
	int array[] = { 12, 45, 68, 34, 56, 23, 47, 78, 90, 18 };
	HeapSort(array, sizeof(array) / sizeof(array[0]));
	for (int i = 0; i < sizeof(array) / sizeof(array[0]);++i)
	{
		printf("%d ", array[i]);
	}
	return 0;
}

 执行结果:

1.4.2 TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

 比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。

 对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能 数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

1. 用数据集合中前K个元素来建堆

        ·前k个最大的元素,则建小堆

        ·前k个最小的元素,则建大堆

2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值