自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(60)
  • 资源 (1)
  • 收藏
  • 关注

原创 Windows下Anaconda的配置与使用(结合PyCharm创建Python环境)

Windows下Anaconda3的配置与使用(结合Pycharm创建Python环境)Anaconda是Python的一个包管理器,可以方便地实现不同python解释器环境的切换,极大提高开发者的工作效率。本文主要介绍Windows下Anaconda的安装、配置和常用命令,并且以PyCharm为例,以实例方式演示anaconda的使用。文章目录Windows下Anaconda3的配置与使用(结合Pycharm创建Python环境)一、准备工作二、Anaconda是什么?2.1 原理介绍2.2 Ana

2021-11-14 14:59:33 1071

原创 2.监督学习

监督学习本节简单记录监督学习的有关知识,包括监督学习的任务描述、监督学习的评价标准和常用方法。文章目录监督学习一、任务描述1.1 分类和回归1.2 过拟合和欠拟合3.评估方法二、评价标准2.1 回归问题的评价标准2.2 分类问题的评价标准三、常用方法总结一、任务描述  监督学习是利用有标签的数据样本进行训练的一种机器学习方法。它的目标是通过学习获得一个模型,这个模型具有对任意给定输入的相应输出进行良好预测的能力。因为它所用的训练样本的标签是人工添加的,在训练之前已知,因此它被称为监督学习。1

2021-11-04 15:29:26 13

原创 1. 深度学习知识体系

深度学习知识体系最近在整理深度学习的内容,简单做下笔记,本章记录深度学习的知识体系。文章目录深度学习知识体系前言总体知识体系前言作为人工智能中的一个重要部分,深度学习自2006年以来随着深度置信网络和深度玻尔兹曼机的提出,受到很大的重视。总体知识体系...

2021-11-03 14:45:22 10

原创 PhotoShop中蒙版介绍

PhotoShop 中蒙版简介大家好,我是wumbuk,最近在使用PhotoShop,简单地记录下PhotoShop中蒙版的用法文章目录PhotoShop 中蒙版简介前言一、快速蒙版1. 快速抠图2. 扣发丝案例二、使用步骤总结前言在PS中,蒙版是合成图像的重要工具,使用它可以在不破坏原始图像的基础上实现特殊的图层叠加效果。另外,蒙版还具有保护和隔离的功能,也就是一种遮罩,将图像中不需要编辑的图像区域进行保护。在PS中有4种蒙版,分别是快速蒙版、图层模板、矢量模板和剪贴模板。一、快速蒙

2021-10-16 16:53:28 103

原创 理解Word2Vec模型

Word2Vec的理解首言总结首言你好,我是Wumbuk。最近有看有关于NLP相关知识,所以利用CSDN简单记录一下Word2Vec方法。Word2Vec方法是用来产生词向量相关模型的一种方法,在进行自然语言处理的时候,我们不可能将词语以本来的形式输入到神经网络的系统中,而是将每一个词都用多维向量表示,同时呢保证该向量的表示方法可以明确地表示出各种不同词之间的关系和预测。Word2Vec方法通过学习文本来用词向量的方式来表征词的语义信息,通过一个嵌入空间表示不同语义的单词。两个词之间的语义愈相近,它们

2021-09-29 21:07:46 44

原创 线性回归讲解

线性回归一、首言简单线性回归2.1 简单线性回归模型2.2 回归参数的最小二乘估计2.2.1 β0\beta_0β0​和β1\beta_1β1​的估计2.3 斜率与截距的假设检验2.4 简单线性回归的区间估计2.5 新观测值的预测总结一、首言回归分析统计方法研究变量之间的关系并且对其构建模型,回归的应用领域广泛,几乎是可以遍及所有的学科。举个例子,如下图所示:我们可以观察到,这些观测值的散点图,它清楚地表明了y与x之间的关系,能够看到所有观测的数据大概是落到了同一条直线上。上图画出了这条直线,但是

2021-09-26 15:13:14 36

原创 GenProg方法介绍|安装|避坑指南

GenProg方法介绍|安装|避坑指南GenProg方法是软件自动修复中的一个基本的方法,是每一个这个方向的研究人员避不开的一个基本知识点。在此,我从我了解到的知识中简单地介绍以下GenProg方法,并且记录一下该软件的安装过程和踩过的坑,希望可以帮助到有需要的小伙伴。文章目录GenProg方法介绍|安装|避坑指南GenProg方法1. 简介2. OCaml 和opam是什么?二、GenProg的安装1.系统环境2.将命令行dash->bash3.安装Opam和OCaml4. 安装Cil5.进

2021-09-22 14:39:37 31

原创 《遗传算法原理及应用》笔记—进化计算

八、进化计算笔者最近在学习遗传算法,希望可以通过笔记对遗传算法做一个简要的介绍与记录。也欢迎小伙伴们一起学习交流。文章目录八、进化计算8.1 进化计算概要8.1.1 进化计算的分类8.1.2 进化计算的基本框架8.1.3 进化计算的基本特点8.2 遗传算法8.3 进化策略8.3.1 进化策略的主要构成技术8.3.2 进化策略的主要特点8.4 进化规划8.4.1进化规划的主要构成技术8.4.2 进化规划的主要特点8.5 三种典型进化算法的比较总结8.1 进化计算概要8.1.1 进化计算的分类 

2021-09-20 21:08:35 33

原创 《遗传算法原理及应用》笔记—并行遗传算法

五、并行遗传算法笔者最近在学习遗传算法,希望可以通过笔记对遗传算法做一个简要的介绍与记录。也欢迎小伙伴们一起学习交流。文章目录五、并行遗传算法5.1 遗传算法的并行化5.1.1 遗传算法并行化的目的5.1.2 遗传算法的并行性分析5.1.3 并行遗传算法的实现方法分类5.1.4 并行遗传算法的硬件支持环境及性能评价5.2 实现并行遗传算法的标准型并行方法5.2.1 标准型并行方法的基本思想5.3 使用并行遗传算法的分解型并行方法5.3.1 分解型并行方法的基本思想5.3.2分解型并行遗传算法的形式化定义

2021-09-19 11:52:20 29

原创 《遗传算法原理及应用》笔记—遗传算法的高级实现技术

四、遗传算法的高级实现技术笔者最近在学习遗传算法,希望可以通过笔记对遗传算法做一个简要的介绍与记录。也欢迎小伙伴们一起学习交流。文章目录四、遗传算法的高级实现技术4.1 倒位算子4.2 二倍体与显性操作因子4.2.1 二倍体结构的生物基础4.2.2 二倍体结构在遗传算法中的实现方案4.3 变长度染色体遗传算法4.3.1 变长度染色体遗传算法的编码与解码4.3.2 切断算子与拼接算子4.4 小生境遗传算法4.4.1 小生境与遗传算法4.5 混合遗传算法4.5.1 混合遗传算法的思想4.5.2 混合遗传算法

2021-09-18 21:07:27 39

原创 《遗传算法原理及应用》笔记—遗传算法的基本实现技术

三、遗传算法的基本实现技术笔者最近在学习遗传算法,希望可以通过笔记对遗传算法做一个简要的介绍与记录。也欢迎小伙伴们一起学习交流。文章目录三、遗传算法的基本实现技术3.1 编码方法3.1.1 二进制编码方法3.1.2 格雷码编码方法3.1.3 浮点数编码方法3.1.4 符号编码方法3.1.5 多参数级联编码方法3.1.6 多参数交叉编码方法3.2 适应度函数3.2.1 目标函数与适应度函数3.2.2 适应度尺度变换3.3 选择算子3.3.1 比例选择3.3.2 最优保存策略3.3.3 确定式采样选择3.3

2021-09-18 14:58:32 16

原创 《遗传算法原理及应用》笔记—基本遗传算法

二、基本遗传算法笔者最近在学习遗传算法,希望可以通过笔记对遗传算法做一个简要的介绍与记录。也欢迎小伙伴们一起学习交流。文章目录二、基本遗传算法2.1 基本遗传算法描述2.1.1 基本遗传算法的构成要素2.1.2 基本遗传算法描述2.1.3 基本遗传算法的形式化定义2.2 基本遗传算法的实现2.2.1 个体适应度评价2.2.2 比例选择算子2.2.3 单点交叉算子2.2.4基本位变异算子2.3 基本遗传算法应用举例总结2.1 基本遗传算法描述  基本遗传算法只使用选择算子、交叉算子和变异算子这三种

2021-09-17 15:48:12 18

原创 《遗传算法原理及应用》笔记—绪论

一、绪论笔者最近在学习遗传算法,希望可以通过笔记对遗传算法做一个简要的介绍与记录。也欢迎小伙伴们一起学习交流。文章目录一、绪论1.1 遗传算法的生物学基础1.2 遗传算法简介1.2.1 遗传算法概要1.2.2 遗传算法的运算过程1.3 遗传算法的特点1.4 遗传算法的发展1.5 遗传算法的应用总结1.1 遗传算法的生物学基础遗传算法可以使得各种人工系统具有优良的自适应能力和优化能力。遗传算法所借鉴的生物学基础就是生物的遗传和进化。1.2 遗传算法简介遗传算法是模拟生物在自然环境中的遗传和进化

2021-09-17 12:07:29 29

原创 CSP 校门外的树|C++

CSP 校门外的树 2021-4 C++解法用动态规划时间复杂度O(N2)O(N^2) O(N2)文章目录CSP 校门外的树 2021-4 C++解法代码代码#include<iostream>#include<vector>#include<set>using namespace std;typedef long long ll;const ll MAXN=100000;const ll mod=1e9+7;class Solutio

2021-09-12 23:02:12 141

原创 C++ 算法笔记|数据结构

C++ 算法笔记|数据结构文章目录C++ 算法笔记|数据结构前言算法竞赛入门经典数据结构1. 队列2. 栈3.字符串4.迭代器5.Set集合6.Map7. 位运算8. 图9. 数组高级用法1.文件操作2.随机数生成注意点处理输入输出(比赛)前言笔者平时会使用C++语言解决算法题,在此过程中往往会使用到一些数据结构和固定的套路,笔者在此做一个小小的总结。也欢迎志同道合的小伙伴继续丰富和改正我的笔记,谢谢。算法竞赛入门经典数据结构1. 队列//头文件#include<queue&gt

2021-09-12 18:25:51 36

原创 Pandas数据分析—使用stack和pivot实现数据透视

15.Pandas使用stack和pivot实现数据透视文章目录15.Pandas使用stack和pivot实现数据透视前言一、经过统计得到多维度指标数据二、使用unstack实现数据的二维透视使用pivot简化透视四、stack、unstack、pivot的语法1.stack2.unstack3.pivot总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas中使用stack和pivot实现数据透视。经过统计得到多维度指标数据使用un

2021-09-04 22:32:16 1947 3

原创 Pandas数据分析—对每个分组应用apply函数

14.Pandas对每个分组应用apply函数文章目录14.Pandas对每个分组应用apply函数前言一、怎样对数值列按分组的归一化二、取每个分组的TOPN数据总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas中对每个分组应用apply函数.GroupByapply(function)function的第一个参数是dataframefunctio的返回结果,可是dataframe、series、单个值,甚至和输入dataframe

2021-09-03 23:00:51 64

原创 Pandas数据分析—的数据转换函数map、apply、applymap

12.Pandas的数据转换函数map、apply、applymap文章目录12.Pandas的数据转换函数map、apply、applymap前言一、准备数据二、map用于Series值的转换三、apply用于Series和DataFrame的转换四、applymap 用于DataFrame所有值的转换总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas中的数据转换函数map、apply、applymap(类似sql数据库中的groupby)

2021-09-02 20:59:06 77

原创 Pandas数据分析—groupby分组统计

12.Pandas中groupby分组统计文章目录12.Pandas中groupby分组统计前言一、分组使用聚合函数做数据统计1.准备数据二、遍历groupby的结果理解执行流程三、实例分组股票数据总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas中groupby的使用(类似sql数据库中的groupby)类似SQL:select city,max(temperature) from city_weather group by city;

2021-08-31 01:05:20 113

原创 Pandas数据分析—批量拆分Excel与合并Excel

11.Pandas批量拆分Excel与合并Excel文章目录11.Pandas批量拆分Excel与合并Excel前言一、假造数据二、程序演示1、将一个大Excel等份拆成多个Excel2、合并多个小Excel到一个大Excel总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas中数据的合并(concat和append)将一个大的Excel等份拆成多个Excel将多个小Excel合并成一个大的Excel并且标记来源一、假造数据wo

2021-08-30 23:36:57 45

原创 Pandas数据分析—实现数据的合并(concat和append)

10.Pandas实现数据的合并(concat和append)文章目录10.Pandas实现数据的合并(concat和append)前言一、假造数据二、程序演示1、使用pandas.concat合并数据2、使用DataFrame.append按行合并数据总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas中数据的合并(concat和append)使用场景:批量合并相同格式的Excel、给DataFrame添加行、给DataFrame添加列

2021-08-30 16:38:39 30

原创 Pandas数据分析—实现DataFrame的Merge(合并)

10.Pandas实现DataFrame的Merge(合并)文章目录10.Pandas实现DataFrame的Merge(合并)前言Merge的语法:一、电影数据集的join实例二、程序演示1.合并不同表的信息2.理解merge时数量的对齐关系3.理解left join、right join、inner join、outer join的区别4. 如果出现非Key的字段重名怎么办总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas中DataFram

2021-08-30 15:01:14 38

原创 Pandas数据分析—axis参数

9.Pandas的axis参数文章目录9.Pandas的axis参数前言一、程序演示总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas的axisaxis=0或者"index":如果是单行操作,指的是某一行如果是聚合操作,指的是跨行cross rowsaxis=1或者"columns"如果是单列操作,指的就是某一列如果是聚合操作,指的就是跨列cross columns一、程序演示提前读取数据#伪造一个三行四列

2021-08-29 22:00:25 24

原创 Pandas数据分析—对字符串的处理

9.Pandas对字符串的处理文章目录9.Pandas对字符串的处理前言一、程序演示1.获取Series的str属性,然后使用各种字符串处理函数2.使用str的startwith,contains等bool类Series可以做条件查询3.需要多次str处理的链式操作4.使用正则表达式的处理总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas的字符串处理的常用方法使用方法: 先获取Series的str属性,然后在属性上调用函数只能在字符串列

2021-08-29 18:31:59 35

原创 Pandas数据分析—排序函数

9.Pandas的数据排序函数文章目录9.Pandas的数据排序函数前言一、排序函数1.Series数据的排序2.DataFrame数据的排序2.1.1 单列排序的情况2.1.2 多列排序的情况总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas的数据排序函数相关常用方法。我们分为Series数据的排序和DataFrame数据的排序一、排序函数提前读取数据import pandas as pdfpath="./datas/600033

2021-08-29 16:53:07 37

原创 解决Pandas中的SettingWithCopyWarning报警

项目场景:Pandas中的SettingWithCopyWarning报警)问题描述:在使用Pandas数据分析的时候,可能会遇到SettingWithCopyWarning错误报警,这是因为不当的操作顺序引起的。# 报错的操作df[condition]["wen_cha"]=df["col1"]-df["col2"] 原因分析:链式操作其实是两个步骤,先是get然后set。get得到的dataFrame可能是view,也可能是copy,所以Pandas就发出了警告 解决的方案原理就

2021-08-29 16:04:34 34

原创 Pandas数据分析—对缺失值的处理

7.Pandas的对缺失值的处理文章目录7.Pandas的对缺失值的处理前言一、概述二、函数的使用实例1.读取excel的时候,忽略前面的几个空行2.检测空值3.删除掉全是空值的列4.删除掉全是空值的行5.将分数列为空的值填充为06.将姓名的缺失值填充总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas对缺失值的处理的方法。一、概述Pandas使用这些函数来处理缺失值isnull和notnull: 检测是否是空值,可用于df和serie

2021-08-29 15:42:17 128

原创 Pandas数据分析—数据统计函数

2.Pandas的数据统计函数文章目录2.Pandas的数据统计函数前言一、三类统计函数1.汇总类统计2.唯一去重和按值计数3.相关系数和协方差总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas的数据统计函数相关常用方法。一、三类统计函数提前读取数据import pandas as pdfpath="./datas/600033.csv"df=pd.read_csv(fpath)1.汇总类统计# 展示所有的数字列统计结果,其中

2021-08-29 12:20:52 50

原创 Linux系统中提示Message: ‘chromedriver‘ executable needs to be in PATH

项目场景:在ubuntu系统中运行爬虫文件问题描述:Linux系统中提示Message: ‘chromedriver’ executable needs to be in PATH原因分析:没有设置环境变量解决方案:#1.修改环境变量cd /etcsudo vim profile#2. 在末尾增加export PATH=$PATH:/study/spidersPro/PingAnDaKaPro/PingAnDaKaPro/chromedriver#3. 激活环境source p

2021-08-18 16:02:14 17

原创 Python爬虫从编码到部署(这么一篇就够了!!!)

Python爬虫从编码到部署(这么一篇就够了!!!)文章目录Python爬虫从编码到部署(这么一篇就够了!!!)一、导论二、http协议三、request模块四、数据解析一、bs4进行数据解析二、xpath解析五、反爬与反反爬一、反爬机质:二、识别验证码的操作:三、实战:六、模拟登录一、爬取某些用户的用户信息七、scrapy框架的使用1. 环境的安装2. scrapy的使用3.持久化存储4. 基于Spider的全站数据爬取5. 五大核心组件6. 请求传参7.ImagesPipeline:8. 中间件9.

2021-08-18 15:58:38 28

原创 分治策略时间复杂度分析(三)-用主方法求解递归式

分治策略时间复杂度分析(三)-用递归树方法求解递归式 虽然以上两种方法都可以求解递归式,但是它们的缺点是比较复杂。所以我们提出第三种方法-主方法,这个方法可以快速求解,很容易地求解很多的递归式,通常不需要纸和笔的帮助。文章目录分治策略时间复杂度分析(三)-用递归树方法求解递归式前言一、主定理二、很值得注意的反例!总结前言进行分治策略时间复杂度分析有三种方法,分别为1.用代入法求解递归式2.用递归树方法求解递归式3.用主方法求解递归式 本篇文章介绍第三种方法,即用主方法来求解递归式。主

2021-08-11 17:50:03 19

原创 分治策略时间复杂度分析(二)-用递归树方法求解递归式

分治策略时间复杂度分析(二)-用递归树方法求解递归式虽然可以用上一篇文章中的代入法去简洁地证明一个解确实是递归式的正确解,但是想出一个好的猜测可能会很困难。所以我们可以用递归树的方法去猜测解。文章目录分治策略时间复杂度分析(二)-用递归树方法求解递归式前言一、递归树法初探二、第一个简单例子三、第二个例子总结前言进行分治策略时间复杂度分析有三种方法,分别为1.用代入法求解递归式2.用递归树方法求解递归式3.用主方法求解递归式 本篇文章介绍第二种方法,即用递归树方法来求解递归式,在递归树

2021-08-11 16:01:30 97

原创 Pandas深入浅出

4.Pandas新增数据列文章目录4.Pandas新增数据列前言一、直接赋值二、df.apply方法三、df.assign方法四、按条件选择分组分别进行赋值总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas的新增数据列方法,如apply方法。在进行数据分析的时候,经常需要按照一定条件创建新的数据列,然后进一步进行分析一、直接赋值import pandas as pdfpath="./datas/600033.csv"df=pd.re

2021-08-08 13:43:04 215

原创 Pandas数据分析深入浅出

3.Padas的数据查询文章目录3.Padas的数据查询前言一、Pandas查询数据的几种方法二、Pandas使用df.loc查询数据的方法2.1 使用单个的label值查询数据2.2 使用值列表批量查询2.3 使用数值区间进行范围查询2.4 使用条件表达式查询2.5 调用函数查询总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas的数据查询方法,如loc方法。一、Pandas查询数据的几种方法df.loc 方法,根据行、列的标签值查询

2021-08-08 12:48:38 44

原创 Pandas数据分析深入浅出

1.Padas的数据结构文章目录1.Padas的数据结构前言一、pandas的数据结构二、pandas读取数据1.读取csv数据2.读取excel表格数据3.读取sql数据库数据4.pandas读取文件做日期解析parse_dates总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。本节主要记录Pandas的数据结构和相关常用方法,如切片。一、pandas的数据结构Pandas的数据结构分为DataFrame和Series。前者表示的是一个二维的表格数据,有行也

2021-08-08 11:35:12 25

原创 Pandas数据分析深入浅出

1.Padas做数据读取文章目录1.Padas做数据读取前言一、pandas是什么?二、pandas读取数据1.读取csv数据2.读取excel表格数据3.读取sql数据库数据总结前言笔者最近正在学习Pandas数据分析,将自己的学习笔记做成一套系列文章。一、pandas是什么?Pandas,python+data+analysis的组合缩写,是python中基于numpy和matplotlib的第三方数据分析库,与后两者共同构成了python数据分析的基础工具包,享有数分三剑客之名。Pan

2021-08-08 00:01:13 51

原创 分治策略时间复杂度分析(一)-用代入法求解递归式

分治策略时间复杂度分析(一)-用代入法求解递归式分治策略是算法中的一种重要的思想,比如归并排序就是用到了分治的策略,在分治策略中我们递归地求解一个问题,在每一层递归中都应用三个步骤:1.分解、2.解决、3.合并。文章目录分治策略时间复杂度分析(一)-用代入法求解递归式前言一、代入法初探二、做出好的猜测三、微妙的细节四、避免陷阱五、改变变量总结前言进行分治策略时间复杂度分析有三种方法,分别为1.用代入法求解递归式2.用递归树方法求解递归式3.用主方法求解递归式本篇文章介绍第一种方法,即

2021-08-05 20:42:08 114

原创 量化金融入门笔记(一)

量化金融入门笔记(一)基础理论知识本节介绍金融量化的基础知识文章目录量化金融入门笔记(一)基础理论知识前言一、量化金融是什么?二、分析指标1.基本面分析2.技术面分析三、投资策略1.多因子选股策略2.布林带策略3. PEG策略4. 动量策略5. 反转策略7. 羊驼交易法则总结前言  本文主要作为我(一个小白)金融量化入门的笔记,也希望通过我的记录可以帮助到更多的小伙伴呢~,欢迎和我一起交流一、量化金融是什么?  量化金融是指依托金融大数据、金融科技和智能金融的技术进展,通过数量化方式

2021-07-24 19:11:12 1402

原创 邻域均值 C++解法

CSP试题 邻域均值思路采用动态规划算法如果暴力解法的话,则时间复杂度为O(n2r2),肯定不会通过。我们采用动态规划:#include<iostream>#include<vector>#include<algorithm>using namespace std;class Solution { public: int averageValue(int n,int L,int r,int t,vector<vector<int&g

2021-07-07 15:31:03 17

原创 灰度直方图 C++解法

CSP 灰度直方图C++11解法解题思路代码解题思路思路比较简单,直接遍历像素值即可。时间复杂度为O(mn)代码#include<iostream>#include<vector>using namespace std;class Solution { public: vector<int> zhiFangTu1(int n,int m,int L,vector<vector<int>> graph) { vect

2021-07-07 11:24:19 31

Pandas数据分析系列的源文件

我的CSDN专栏《Pandas数据分析》中利用到的被操作文件,免费分享给需要的小伙伴

2021-09-04

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除