亲爱的小伙伴们😘,在求知的漫漫旅途中,若你对深度学习的奥秘、Java 与 Python 的奇妙世界,亦或是读研论文的撰写攻略有所探寻🧐,那不妨给我一个小小的关注吧🥰。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享🎁。每一个点赞👍,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟🤗!
2024 年,腾讯在技术领域持续深耕,取得了一系列令人瞩目的最新技术成果和学术研究进展,展现了其在科技前沿的强大实力和创新能力。以下是对这些成果的详细介绍:
Angel 机器学习平台
- 技术突破:大模型时代,面对模型参数和训练数据的海量增长带来的通信、效率、规模等挑战,腾讯全链路自研了 Angel 机器学习平台。在通信方面,其自研的 RDMA 网络实现了集群高速互联,单节点带宽达到 3.2T,相比同类竞品性能提升 30%,成本降低 70%;在效率方面,自研训练 / 推理框架,提出显存 + 主存的一体化机制,实现多维并行和算子优化,训练性能较开源框架提升 2.6 倍,推理速度提升 2.3 倍;在规模方面,采用 GPU 拓扑感知调度与层次化规约计算,使 GPU 集群加速比从 50% 提升到 99%,达成单任务万卡的线性扩展。
- 应用领域:该平台已广泛应用于大模型、广告、社交、金融等众多领域,并通过腾讯云服务于 30 多万家行业客户,有力地推动了各行业的技术进步和产业创新。
腾讯混元大模型及相关应用
- 模型升级:经过近一年的迭代升级,腾讯混元大模型在国内率先采用 MoE 架构,参数量和 tokens 数量位居国内大模型第一梯队。其单日调用 Tokens 达到千亿级别,单日调用次数超过 3 亿,并新开放了混元 - lite 256k 版本、vision 多模态版本,以及代码生成、角色扮演、function call 等子模型和接口,以满足不同企业和开发者的多样化需求 。
- 应用拓展:基于混元大模型底座,腾讯打造了一系列创新应用和工具。如腾讯元器,作为一站式智能体创作与分发平台,用户可创建专属 AI 智能体并发布到腾讯生态;腾讯元宝除提供 AI 搜索、写作、绘画等核心能力外,还新增了深度阅读模式等特色应用。此外,还有大模型知识引擎、图像创作引擎、视频创作引擎等,为用户提供了更加丰富和强大的 AI 体验。
数字交互引擎技术
- 技术特点:数字交互引擎是文化科技融合的典型产物,集成了物理模拟、3D 建模、实时渲染等多种前沿技术,主要由图形模块、仿真模块、实时渲染等模块构成。它以软件代码包形式创造虚拟场景,动态呈现其外观变化,支持其与物理世界进行实时交互。
- 行业应用:该技术已从游戏场景拓展到文旅、汽车、工业等多元领域,成为构建实时虚拟世界、实现虚实交互的关键工具集。例如在自动驾驶的仿真测试中,可通过采集真实数据,在数字交互引擎中重建数字场景,然后进行编辑、生成更多场景,提升训练和测试样本的多样性。
腾讯云存储相关技术
- GooseFS 技术:腾讯云存储提出基于对象存储搭建分布式高性能文件系统 GooseFS,引入三个关键设计来实现在存算分离架构下对对象存储的加速访问。在计算端,GooseFS 将离计算资源更近的本地盘作为缓存介质存放部分对象存储数据,实现计算对数据的就近访问,降低延迟,同时通过多级粒度缓存管理和短路读机制降低了随机小 IO 下的数据访问时延;在存储端,构建了高性能 SSD 缓存池,为计算节点提供存储端的缓存支持,以提高面对顺序 IO 时的吞吐率,解决了对象存储介质性能不足的问题;同时,自研了一套高性能元数据引擎,通过元数据分级管理、强一致性缓存和平行扩展等技术手段来提升元数据读写性能,并将元数据持久化到底层的企业级数据库中,以此大幅提升了元数据处理的效率。
- 应用效果:实验结果表明,相比原生对象存储,GooseFS 的吞吐量提升了 8~10 倍,同时降低了 90% 的存储带宽消耗,满足了多种工作负载对高性能要求,并已服务了蔚来、博世、百川、高途、燃数、酷狗等一大批客户。
2024 年腾讯的部分重要论文
- 《GooseFS: 分布式缓存服务以提高云对象存储性能》:该论文入选行业顶会 NAS2024。文中详细阐述了腾讯云存储提出的 GooseFS 技术,通过上述介绍的计算端缓存管理、存储端缓存池构建以及高性能元数据引擎等关键设计,有效解决了对象存储在大数据分析、AIGC 等场景下的性能挑战,为云存储领域的技术发展提供了重要参考。
- NPU 性能优化相关研究:腾讯技术专家刘强在 “全球 C++ 及系统软件技术大会” 上分享了 NPU 性能优化的洞察。其主导的项目涉及存储、计算加速器和性能评估等多个领域,通过统一硬件抽象层,将不同厂商的 NPU 运行时接口进行抽象化,使上层业务与算法对硬件差异 “无感知”,显著缩短了硬件上线周期并降低了开发成本。此外,还介绍了基于编译器技术屏蔽硬件差异的探索成果,以及通过深度学习框架内的采样工具结合厂商提供的算子仿真数据,构建基于时间线的执行路径分析方法,能够准确预测 NPU 在真实训练环境中的端到端性能。