亲爱的小伙伴们😘,在求知的漫漫旅途中,若你对深度学习的奥秘、JAVA 、PYTHON与SAP 的奇妙世界,亦或是读研论文的撰写攻略有所探寻🧐,那不妨给我一个小小的关注吧🥰。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享🎁。每一个点赞👍,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟🤗!
自动驾驶技术作为交通领域的重要变革力量,近年来一直是科研的热门方向,2022-2024 年间涌现出了许多具有重要意义的论文。以下是对部分论文的详细介绍:
1. 《Hindsight is 20/20: Leveraging Past Traversals to Aid 3D Perception》
- 论文链接:https://arxiv.org/pdf/2203.11405.pdf
- 核心内容:来自康奈尔大学的研究人员提出为自动驾驶汽车创造 “记忆” 的方法。通过在汽车经过物体时使用神经网络计算物体描述符,压缩并存储为类似人脑记忆的 “Squash 特征”。下次经过同一位置时,车辆可查询此数据库 “回忆” 上次学习内容,且该数据库可不断更新并在车辆间共享,以丰富识别信息。该方法可作为特征添加到基于激光雷达的 3D 目标检测器中,无需额外监督或人工注释即可联合训练检测器和 Squash 表示,有望降低自动驾驶汽车开发成本并提高其在常用地点的导航效率。
2. 《Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions》
- 论文链接:https://openaccess.thecvf.com/content/cvpr2022/papers/diaz-ruiz_ithaca365_dataset_and_driving_perception_under_repeated_and_challenging_weather_cvpr_2022_paper.pdf
- 核心内容:研究人员通过驾驶配置激光雷达传感器的汽车在伊萨卡及其周围 15 公里环路上重复行驶 40 次,收集了不同环境、天气和时段的信息,构建了 “Ithaca365” 数据集。此数据集直面自动驾驶汽车在恶劣天气下的感知挑战,为研究如何让自动驾驶汽车在复杂天气条件下更好地感知环境提供了宝贵的数据支持,有助于推动自动驾驶技术在各种天气条件下的可靠性和稳定性的提升。
3. 《Learning to Detect Mobile Objects from Lidar Scans without Labels》
- 论文链接: