java----hashmap底层原理

本文详细介绍了JDK1.8中HashMap的实现细节,包括其基于Map接口,允许null键值,无序性以及线程不安全性。HashMap采用数组+链表/红黑树的数据存储结构,当链表长度超过8时转换为红黑树以优化查找效率。此外,文章还探讨了HashMap的构造函数、get和put方法的实现,以及扩容策略和红黑树的特性。
摘要由CSDN通过智能技术生成

基于JDK1.8

一、hashmap概述

HashMap基于Map接口实现,元素以键值对的方式存储,并且允许使用null 建和null 值, 因为key不允许重复,因此只能有一个键为null,另外HashMap不能保证放入元素的顺序,它是无序的,和放入的顺序并不能相同。HashMap是线程不安全的。

1.继承关系

public class HashMap<K,V>extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable 

2.基本属性

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; //默认初始化大小 16 
static final float DEFAULT_LOAD_FACTOR = 0.75f;     //负载因子0.75
static final Entry<?,?>[] EMPTY_TABLE = {};         //初始化的默认数组
transient int size;     //HashMap中元素的数量
int threshold;          //判断是否需要调整HashMap的容量

二、HashMap的数据存储结构

1)采用 数组 + 链表的形式。
  HashMap 采用 Node 数组来存储 key-value 键值对,且数组中的每个 Node 实际上是一个单向的链表,内部存储下一个 Node 实体的指针
  
在这里插入图片描述

transient Node<K,V>[] table;

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;

    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }

    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }

    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }

    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }

    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}

(2)当前数组长度大于某个阈值(默认为 64),且链表长度大于某个阈值(默认为 8)时,链表会转为 红黑树。
在这里插入图片描述

三、HashMap的方法

1.构造函数

HashMap的构造方法有4种,主要涉及到的参数有,指定初始容量,指定填充比和用来初始化的Map

  //构造函数1  
  public HashMap(int initialCapacity, float loadFactor) {  
     //指定的初始容量非负  
      if (initialCapacity < 0)  
          throw new IllegalArgumentException(Illegal initial capacity:  +  
                                             initialCapacity);  
      //如果指定的初始容量大于最大容量,置为最大容量  
      if (initialCapacity > MAXIMUM_CAPACITY)  
         initialCapacity = MAXIMUM_CAPACITY;  
     //填充比为正  
     if (loadFactor <= 0 || Float.isNaN(loadFactor))  
         throw new IllegalArgumentException(Illegal load factor:  +  
                                            loadFactor);  
     this.loadFactor = loadFactor;  
     this.threshold = tableSizeFor(initialCapacity);//新的扩容临界值  
 }  
    
//构造函数2  
 public HashMap(int initialCapacity) {  
     this(initialCapacity, DEFAULT_LOAD_FACTOR);  
 }  
    
 //构造函数3  
 public HashMap() {  
     this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted  
 }  
    
 //构造函数4用m的元素初始化散列映射  
 public HashMap(Map<!--? extends K, ? extends V--> m) {  
     this.loadFactor = DEFAULT_LOAD_FACTOR;  
   putMapEntries(m, false);  
 }  

2.getValue方法

 public V get(Object key) {  
          Node<K,V> e;  
          return (e = getNode(hash(key), key)) == null ? null : e.value;  
      }  
        /** 
       * Implements Map.get and related methods 
       * 
       * @param hash hash for key 
       * @param key the key 
      * @return the node, or null if none 
      */  
     final Node<K,V> getNode(int hash, Object key) {  
         Node<K,V>[] tab;//Entry对象数组  
     Node<K,V> first,e; //在tab数组中经过散列的第一个位置  
     int n;  
     K k;  
     /*找到插入的第一个Node,方法是hash值和n-1相与,tab[(n - 1) & hash]*/  
     //也就是说在一条链上的hash值相同的  
         if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) {  
     /*检查第一个Node是不是要找的Node*/  
             if (first.hash == hash && // always check first node  
                 ((k = first.key) == key || (key != null && key.equals(k))))//判断条件是hash值要相同,key值要相同  
                 return first;  
       /*检查first后面的node*/  
             if ((e = first.next) != null) {  
                 if (first instanceof TreeNode)  
                     return ((TreeNode<K,V>)first).getTreeNode(hash, key);  
                 /*遍历后面的链表,找到key值和hash值都相同的Node*/  
                 do {  
                     if (e.hash == hash &&  
                        ((k = e.key) == key || (key != null && key.equals(k))))  
                         return e;  
                 } while ((e = e.next) != null);  
             }  
         }  
         return null;  
     }  

get(key)方法时获取key的hash值,计算hash&(n-1)得到在链表数组中的位置first=tab[hash&(n-1)],先判断first的key是否与参数key相等,不等就遍历后面的链表找到相同的key值返回对应的Value值即可

3.put(key,value)方法

public V put(K key, V value) {  
          return putVal(hash(key), key, value, false, true);  
      }  
       /** 
       * Implements Map.put and related methods 
       * 
       * @param hash hash for key 
       * @param key the key 
       * @param value the value to put 
     * @param onlyIfAbsent if true, don't change existing value 
      * @param evict if false, the table is in creation mode. 
      * @return previous value, or null if none 
      */  
 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,  
                    boolean evict) {  
         Node<K,V>[] tab;   
     Node<K,V> p;   
     int n, i;  
         if ((tab = table) == null || (n = tab.length) == 0)  
             n = (tab = resize()).length;  
     /*如果table的在(n-1)&hash的值是空,就新建一个节点插入在该位置*/  
         if ((p = tab[i = (n - 1) & hash]) == null)  
            tab[i] = newNode(hash, key, value, null);  
     /*表示有冲突,开始处理冲突*/  
         else {  
             Node<K,V> e;   
         K k;  
     /*检查第一个Node,p是不是要找的值*/  
             if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))  
                 e = p;  
             else if (p instanceof TreeNode)  
                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);  
             else {  
                for (int binCount = 0; ; ++binCount) {  
         /*指针为空就挂在后面*/  
                     if ((e = p.next) == null) {  
                         p.next = newNode(hash, key, value, null);  
                //如果冲突的节点数已经达到8个,看是否需要改变冲突节点的存储结构,               
             //treeifyBin首先判断当前hashMap的长度,如果不足64,只进行  
                         //resize,扩容table,如果达到64,那么将冲突的存储结构为红黑树  
                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st  
                             treeifyBin(tab, hash);  
                         break;  
                     }  
        /*如果有相同的key值就结束遍历*/  
                     if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))  
                         break;  
                     p = e;  
                 }  
            }  
     /*就是链表上有相同的key值*/  
             if (e != null) { // existing mapping for key,就是key的Value存在  
                 V oldValue = e.value;  
                 if (!onlyIfAbsent || oldValue == null)  
                     e.value = value;  
                 afterNodeAccess(e);  
                 return oldValue;//返回存在的Value值  
            }  
         }  
         ++modCount;  
      /*如果当前大小大于门限,门限原本是初始容量*0.75*/  
         if (++size > threshold)  
             resize();//扩容两倍  
         afterNodeInsertion(evict);  
         return null;  
     }  

下面简单说下添加键值对put(key,value)的过程:
1,判断键值对数组tab[]是否为空或为null,否则以默认大小resize();
2,根据键值key计算hash值得到插入的数组索引i,如果tab[i]==null,直接新建节点添加,否则转入3
3,判断当前数组中处理hash冲突的方式为链表还是红黑树(check第一个节点类型即可),分别处理

4.HasMap的扩容机制resize();

构造hash表时,如果不指明初始大小,默认大小为16(即Node数组大小16),如果Node[]数组中的元素达到(填充比*Node.length)重新调整HashMap大小 变为原来2倍大小

/** 
      * Initializes or doubles table size.  If null, allocates in 
      * accord with initial capacity target held in field threshold. 
      * Otherwise, because we are using power-of-two expansion, the 
     * elements from each bin must either stay at same index, or move 
      * with a power of two offset in the new table. 
      * 
      * @return the table 
      */  
    final Node<K,V>[] resize() {  
        Node<K,V>[] oldTab = table;  
        int oldCap = (oldTab == null) ? 0 : oldTab.length;  
        int oldThr = threshold;  
        int newCap, newThr = 0;  
       
 /*如果旧表的长度不是空*/  
        if (oldCap > 0) {  
            if (oldCap >= MAXIMUM_CAPACITY) {  
                threshold = Integer.MAX_VALUE;  
                return oldTab;  
            }  
 /*把新表的长度设置为旧表长度的两倍,newCap=2*oldCap*/  
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&  
                     oldCap >= DEFAULT_INITIAL_CAPACITY)  
       /*把新表的门限设置为旧表门限的两倍,newThr=oldThr*2*/  
                newThr = oldThr << 1; // double threshold  
        }  
     /*如果旧表的长度的是0,就是说第一次初始化表*/  
        else if (oldThr > 0) // initial capacity was placed in threshold  
            newCap = oldThr;  
        else {               // zero initial threshold signifies using defaults  
            newCap = DEFAULT_INITIAL_CAPACITY;  
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);  
        }  
       
       
       
        if (newThr == 0) {  
            float ft = (float)newCap * loadFactor;//新表长度乘以加载因子  
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?  
                      (int)ft : Integer.MAX_VALUE);  
        }  
        threshold = newThr;  
        @SuppressWarnings({"rawtypes","unchecked"})  
 /*下面开始构造新表,初始化表中的数据*/  
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];  
       table = newTab;//把新表赋值给table  
        if (oldTab != null) {//原表不是空要把原表中数据移动到新表中      
            /*遍历原来的旧表*/        
            for (int j = 0; j < oldCap; ++j) {  
                Node<K,V> e;  
                if ((e = oldTab[j]) != null) {  
                    oldTab[j] = null;  
                    if (e.next == null)//说明这个node没有链表直接放在新表的e.hash & (newCap - 1)位置  
                        newTab[e.hash & (newCap - 1)] = e;  
                    else if (e instanceof TreeNode)  
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);  
 /*如果e后边有链表,到这里表示e后面带着个单链表,需要遍历单链表,将每个结点重*/  
                    else { // preserve order保证顺序  
                 新计算在新表的位置,并进行搬运  
                        Node<K,V> loHead = null, loTail = null;  
                       Node<K,V> hiHead = null, hiTail = null;  
                     Node<K,V> next;  
                    do {  
                           next = e.next;//记录下一个结点  
           //新表是旧表的两倍容量,实例上就把单链表拆分为两队,  
              //e.hash&oldCap为偶数一队,e.hash&oldCap为奇数一对  
                            if ((e.hash & oldCap) == 0) {  
                                if (loTail == null)  
                                    loHead = e;  
                                else  
                                   loTail.next = e;  
                                loTail = e;  
                         }  
                           else {  
                                if (hiTail == null)  
                                    hiHead = e;  
                               else  
                                  hiTail.next = e;  
                                hiTail = e;                             }  
                       } while ((e = next) != null);  
                       
                        if (loTail != null) {//lo队不为null,放在新表原位置  
                            loTail.next = null;  
                            newTab[j] = loHead;  
                        }  
                        if (hiTail != null) {//hi队不为null,放在新表j+oldCap位置  
                            hiTail.next = null;  
                            newTab[j + oldCap] = hiHead;  
                        }  
                    }  
                }  
            }  
        }  
        return newTab;  
    }  

三、红黑树

在jdk8中,HashMap处理“碰撞”增加了红黑树这种数据结构,当碰撞结点较少时,采用链表存储,当较大时(>8个),采用红黑树(特点是查询时间是O(logn))存储(有一个阀值控制,大于阀值(8个),将链表存储转换成红黑树存储)。
在这里插入图片描述

关于红黑树的内容,网上给出的内容非常多,主要有以下几个特性:
1、每个节点要么是红色,要么是黑色,但根节点永远是黑色的;
2、每个红色节点的两个子节点一定都是黑色;
3、红色节点不能连续(也即是,红色节点的孩子和父亲都不能是红色);
4、从任一节点到其子树中每个叶子节点的路径都包含相同数量的黑色节点;
5、所有的叶节点都是是黑色的(注意这里说叶子节点其实是上图中的 NIL 节点);在树的结构发生改变时(插入或者删除操作),往往会破坏上述条件 3 或条件 4,需要通过调整使得查找树重新满足红黑树的条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值