给定两个矩阵A和B,要求你计算它们的乘积矩阵AB。需要注意的是,只有规模匹配的矩阵才可以相乘。即若A有Ra行、Ca列,B有Rb行、Cb列,则只有Ca与Rb相等时,两个矩阵才能相乘。
输入格式:
输入先后给出两个矩阵A和B。对于每个矩阵,首先在一行中给出其行数R和列数C,随后R行,每行给出C个整数,以1个空格分隔,且行首尾没有多余的空格。输入保证两个矩阵的R和C都是正数,并且所有整数的绝对值不超过100。
输出格式:
若输入的两个矩阵的规模是匹配的,则按照输入的格式输出乘积矩阵AB,否则输出Error: Ca != Rb
,其中Ca
是A的列数,Rb
是B的行数。
样例1:">输入样例1:
2 3
1 2 3
4 5 6
3 4
7 8 9 0
-1 -2 -3 -4
5 6 7 8
输出样例1:
2 4
20 22 24 16
53 58 63 28
输入样例2:
3 2
38 26
43 -5
0 17
3 2
-11 57
99 68
81 72
输出样例2:
Error: 2 != 3
#include<bits/stdc++.h>
using namespace std;
int main(){
//输入数组
int Ra, Ca, Rb, Cb;
cin >> Ra >> Ca;
int ma[Ra][Ca];
for(int i=0;i<Ra;i++){
for(int j=0;j<Ca;j++){
cin >> ma[i][j];
}
}
cin >> Rb >> Cb;
int mb[Rb][Cb];
for(int i=0;i<Rb;i++){
for(int j=0;j<Cb;j++){
cin >> mb[i][j];
}
}
//判断是否可以相乘
if(Ca!=Rb){
cout << "Error: " << Ca << " != " << Rb << endl;
}else{
int mc[Ra][Cb];
memset(mc,0,sizeof(mc));
cout << Ra << " " << Cb << endl;
for(int i=0;i<Ra;i++){
for(int j=0;j<Cb;j++){
for(int k=0;k<Ca;k++){
mc[i][j] += (ma[i][k] * mb[k][j]);
}
cout << mc[i][j];
if(j!=Cb-1)
cout << " ";
}
cout << endl;
}
}
return 0;
}