C L1-048 矩阵A乘以B (15 分)

给定两个矩阵A和B,要求你计算它们的乘积矩阵AB。需要注意的是,只有规模匹配的矩阵才可以相乘。即若A有Ra​行、Ca​列,B有Rb​行、Cb​列,则只有Ca​与Rb​相等时,两个矩阵才能相乘。

输入格式:

输入先后给出两个矩阵A和B。对于每个矩阵,首先在一行中给出其行数R和列数C,随后R行,每行给出C个整数,以1个空格分隔,且行首尾没有多余的空格。输入保证两个矩阵的R和C都是正数,并且所有整数的绝对值不超过100。

输出格式:

若输入的两个矩阵的规模是匹配的,则按照输入的格式输出乘积矩阵AB,否则输出Error: Ca != Rb,其中Ca是A的列数,Rb是B的行数。

样例1:">输入样例1:

2 3
1 2 3
4 5 6
3 4
7 8 9 0
-1 -2 -3 -4
5 6 7 8

输出样例1:

2 4
20 22 24 16
53 58 63 28

输入样例2:

3 2
38 26
43 -5
0 17
3 2
-11 57
99 68
81 72

输出样例2:

Error: 2 != 3
#include<bits/stdc++.h>
using namespace std;

int main(){
	//输入数组 
	int Ra, Ca, Rb, Cb;
	cin >> Ra >> Ca;
	int ma[Ra][Ca];
	for(int i=0;i<Ra;i++){
		for(int j=0;j<Ca;j++){
			cin >> ma[i][j];
		}
	}
	cin >> Rb >> Cb;
	int mb[Rb][Cb];
	for(int i=0;i<Rb;i++){
		for(int j=0;j<Cb;j++){
			cin >> mb[i][j];
		}
	}
	//判断是否可以相乘
	if(Ca!=Rb){
		cout << "Error: " << Ca << " != " << Rb << endl;
	}else{
		int mc[Ra][Cb];
		memset(mc,0,sizeof(mc));
		cout << Ra << " " << Cb << endl;
		for(int i=0;i<Ra;i++){
			for(int j=0;j<Cb;j++){
				for(int k=0;k<Ca;k++){
					mc[i][j] += (ma[i][k] * mb[k][j]); 
				}
				cout << mc[i][j];
				if(j!=Cb-1)
					cout << " ";
			}
			cout << endl;
		}
	}
	return 0; 
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值