概率问题,已知其中一个是女孩,另一个也是女孩的概率是多少?

今日关于这个是1/2还是1/3争议不断,在这里,我发布下我自己的见解。
首先这是个条件概率,我们另事件A为其中一个是女孩。
事件B为:这两个孩子是女女;
根据条件概率公式
P(A|B) = P(A)/P(B);
那么
P(B|A) = P(B)/P(A)
P(B) = 1/4;
到这里是没有问题的,问题出现在了这个P(A)的概率
有些人认为生孩子无非4种情况
男男,男女,女男,女女。已知其中一个是女孩,那么男男排除,所以概率是
(1/4)/(3/4) = 1/3
既他们认为,其中一个是女孩的概率是3/4;
而我认为,其中一个是女孩既事件A也是个条件概率,首先随机取一个,然后是女孩。既
P(A) = P(男男)*0+P(女女)*1+P(男女)*1/2+P(女男)*1/2 = 1/2;
既P(B|A) = (1/4)/(1/2) = 1/2;

讨论到这,我肯定认为我的想法是正确的,因为如果,按照他们所想
P(A)=3/4;
那么我们令事件C为其中一个是男孩,事件D为两个孩子是一男一女
P(D) = 1-P(男男)-P(女女) = 1/2;
那个事件D的概率应该还等于P(A)*P©,既一个男一个女,再乘以2的全排列,既两种排列方法
如果按照P(A) = P© = 3/4的算法明显是有问题的。
既P(D) = (3/4) * (3/4) *2 = (9/4);
然后不死心的我上网上查了,百度百科上问的原题是
在这里插入图片描述
而这个至少而说法,就不一样了。就变成了事件A:两个孩子中有女孩,
则P(A) = 1-1/4 = 3/4;
那么答案会变成1/3毫无争议。

基于html+python+Apriori 算法、SVD(奇异值分解)的电影推荐算法+源码+项目文档+算法解析+数据集,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 电影推荐算法:Apriori 算法、SVD(奇异值分解)推荐算法 电影、用户可视化 电影、用户管理 数据统计 SVD 推荐 根据电影打分进行推荐 使用 svd 模型计算用户对未评分的电影打分,返回前 n 个打分最高的电影作为推荐结果 n = 30 for now 使用相似电影进行推荐 根据用户最喜欢的前 K 部电影,分别计算这 K 部电影的相似电影 n 部,返回 K*n 部电影进行推荐 K = 10 and n = 5 for now 根据相似用户进行推荐 获取相似用户 K 个,分别取这 K 个用户的最喜爱电影 n 部,返回 K*n 部电影进行推荐 K = 10 and n = 5 for now Redis 使用 Redis 做页面访问次数统计 缓存相似电影 在使用相似电影推荐的方式时,每次请求大概需要 6.6s(需要遍历计算与所有电影的相似度)。 将相似电影存储至 redis 中(仅存储 movie_id,拿到 movie_id 后还是从 mysql 中获取电影详细信息), 时间缩短至:93ms。 十部电影,每部存 top 5 similar movie 登录了 1-6 user并使用了推荐系统,redis 中新增了 50 部电影的 similar movie,也就是说,系统只为 6 为用户计算了共 60 部电影的相似度,其中就有10 部重复电影。 热点电影重复度还是比较高的
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值