零基础入门深度学习笔记-第一课(入门介绍及房价回归案列)

本文介绍了人工智能与机器学习、深度学习的关系,详细讲解了线性回归模型及其在波士顿房价预测中的应用。通过实例展示了如何构建、训练和优化模型,包括数据预处理、模型设计、梯度下降法、随机梯度下降法,并使用飞浆高层API重写代码。此外,还探讨了模型保存和测试的过程。
摘要由CSDN通过智能技术生成

零基础入门深度学习第一课


人工智能与机器学习、深度学习的关系

在这里插入图片描述

人工智能

如字面含义,人工智能是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。由于这个定义只阐述了目标,而没有限定方法,因此实现人工智能存在的诸多方法和分支,导致其变成一个“大杂烩”式的学科。

机器学习

机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能,其实现方法可以分成两步:训练和预测,类似于我们熟悉的归纳和演绎。

在这里插入图片描述
机器学习的过程与牛顿第二定律的学习过程基本一致,都分为假设、评价和优化三个阶段:

假设:通过观察加速度a和作用力F的观测数据,假设a和F是线性关系,即a=w⋅F。
评价:对已知观测数据上的拟合效果好,即w⋅F计算的结果,要和观测的a尽量接近。
优化:在参数w的所有可能取值中,发现w=1/m可使得评价最好(最拟合观测样本)。

机器学习的本质是寻找参数,拟合一个大公式
在这里插入图片描述

深度学习

相比传统的机器学习算法,两者在理论结构上是一致的,即:模型假设、评价函数和优化算法,其根本差别在于假设的复杂度,如下:
在这里插入图片描述

输入美女图片后,对计算机而言,只能接收到一个数字矩阵,对于美女这种高级的语义概念,从像素到高级语义概念中间要经历的信息变换的复杂性是难以想象的!这种变换已经无法用数学公式表达,因此研究者们借鉴了人脑神经元的结构,设计出神经网络的模型。

神经网络的基本概念

人工神经网络包括多个神经网络层,如卷积层、全连接层、LSTM等,每一层又包括很多神经元,超过三层的非线性神经网络都可以被称为深度神经网络。通俗的讲,深度学习的模型可以视为是输入到输出的映射函数,如图像到高级语义(美女)的映射,足够深的神经网络理论上可以拟合任何复杂的函数。

因此神经网络非常适合学习样本数据的内在规律和表示层次,对文字、图像和语音任务有很好的适用性。

神经网络图示
神经元: 神经网络中每个节点称为神经元,由两部分组成:
加权和:将所有输入加权求和。
非线性变换(激活函数):加权和的结果经过一个非线性函数变换,让神经元计算具备非线性的能力。

多层连接: 大量这样的节点按照不同的层次排布,形成多层的结构连接起来,即称为神经网络。
前向计算: 从输入计算输出的过程,顺序从网络前至后。
计算图: 以图形化的方式展现神经网络的计算逻辑又称为计算图。我们也可以将神经网络的计算图以公式的方式表达,如下:

在这里插入图片描述

在这里插入图片描述

案例:波士顿房价

波士顿房价预测是一个经典的机器学习任务,其重要度相当于程序中的“hello world"。

波士顿地区的房价受诸多因素影响,13种可能影响房价的因素和该类型房屋的均价,如下:
在这里插入图片描述
对于预测问题,可以根据预测输出的类型是连续的实数值,还是离散的标签,区分为回归任务和分类任务。因为房价是一个连续值,所以房价预测显然是一个回归任务。

线性回归预测模型

线性回归模型是最简单的回归模型,假设房价和各因素的影响关系可用如下公式表示:
在这里插入图片描述
模型的求解即是通过数据拟合出权重斜率Wj和偏置项b

在这种情况下,我们一般用均方误差来作为损失函数(合理性,易解性):
在这里插入图片描述
神经网络的标准结构中每个神经元由加权和与非线性变换构成,然后将多个神经元分层的摆放并连接形成神经网络。

线性回归模型可以认为是神经网络模型的一种极简特例,是一个只有加权和、没有非线性变换的神经元(也无需形成网络),如下:
在这里插入图片描述

模型构建

一般而已,模型构建有五个步骤
在这里插入图片描述

数据处理

数据处理包含五个部分:数据导入、数据形状变换、数据集划分、数据归一化处理和封装load data函数。数据预处理后,才能被模型调用。

 #导入需要用到的package
import numpy as np
import json
# 读入训练数据
datafile = './work/housing.data'
data = np.fromfile(datafile, sep=' ')
data

在这里插入图片描述
导入数据是一维的,因此我们对它进行形状转换,使它变成14列的数据(13个X影响因素,一个Y房价输出)

# 这里对原始数据做reshape,变成N x 14的形式
feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE','DIS', 
                 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
feature_num = len(feature_names)
data = data.reshape([data.shape[0] // feature_num, feature_num])

# 查看数据
x = data[0]
print(x.shape)
print(x)

在这里插入图片描述
数据集划分,将数据集划分成训练集和测试集,其中训练集用于确定模型的参数,测试集用于评判模型的效果。

ratio = 0.8
offset = int(data.shape[0] * ratio)
training_data = data[:offset]
training_data.shape

数据集归一化处理

# 计算train数据集的最大值,最小值,平均值
maximums, minimums, avgs = \
                     training_data.max(axis=0), \
                     training_data.min(axis=0), \
     training_data.sum(axis=0) / training_data.shape[0]
# 对数据进行归一化处理
for i in range(feature_num):
    #print(maximums[i], minimums[i], avgs[i])
    data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])
封装成load data函数

将上述几个数据处理操作封装成load data函数,以便下一步模型的调用,实现方法如下。

def load_data():
    # 从文件导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=' ')

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算训练集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
                                 training_data.sum(axis=0) / training_data.shape[0]

    # 对数据进行归一化处理
    for i in range(feature_num):
        #print(maximums[i], minimums[i], avgs[i])
        data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data

数据处理到此就告一段落

注意:测试集归一化也是用的训练集的最大值和最小值标准,(限定到一定范围)

验证:

# 获取数据
training_data, test_data = load_data()
x = training_data[:, :-1]
y = training_data[:, -1:]

模型设计

模型设计是深度学习模型关键要素之一,也称为网络结构设计,相当于模型的假设空间,即实现模型“前向计算”(从输入到输出)的过程。

如果将输入特征和输出预测值均以向量表示,输入特征x有13个分量,y有1个分量,那么参数权重的形状(shape)是13×1。
初始化如下:

w = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, -0.1, -0.2, -0.3, -0.4, 0.0]
w = np.array(w).reshape([13, 1])

完整的线性回归公式,还需要初始化偏移量bbb,同样随意赋初值-0.2。那么,线性回归模型的完整输出是z=x*w+b,这个从特征和参数计算输出值的过程称为“前向计算”

将上述计算预测输出的过程以“类和对象”的方式来描述,类成员变量有参数w和b。通过写一个forward函数(代表“前向计算”)完成上述从特征和参数到输出预测值的计算过程,代码如下所示。

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,
        # 此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z

基于Network类的定义,模型的计算过程如下所示。

net = Network(13)
x1 = x[0]
y1 = y[0]
z = net.forward(x1)
print(z)
训练配置

模型设计完成后,需要通过训练配置寻找模型的最优值,即通过损失函数来衡量模型的好坏。训练配置也是深度学习模型关键要素之一。

均方误差公式如下:
在这里插入图片描述
在回归问题中多用均方误差,分类问题中多用交叉熵损失函数

计算损失函数时需要把每个样本的损失函数值都考虑到,所以我们需要对单个样本的损失函数进行求和,并除以样本总数N
在这里插入图片描述
代码定义如下:

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        cost = error * error
        cost = np.mean(cost)
        return cost

测试如下:

net = Network(13)
# 此处可以一次性计算多个样本的预测值和损失函数
x1 = x[0:3]
y1 = y[0:3]
z = net.forward(x1)
print('predict: ', z)
loss = net.loss(z, y1)
print('loss:', loss)

在这里插入图片描述

训练过程

训练过程是深度学习模型的关键要素之一,其目标是让定义的损失函数Loss尽可能的小,也就是说找到一个参数解w和b,使得损失函数取得极小值。
在这里插入图片描述
如图,处于曲线极值点时的斜率为0,即函数在极值点的导数为0。那么,让损失函数取极小值的w和b应该是下述方程组的解:
在这里插入图片描述
然而:如果模型中含有非线性变换,或者损失函数不是均方差这种简单的形式,则很难通过上式求解。为了解决这个问题,下面我们将引入更加普适的数值求解方法:梯度下降法。

梯度下降法

在现实中存在大量的函数正向求解容易,但反向求解较难,被称为单向函数,这种函数在密码学中有大量的应用。密码锁的特点是可以迅速判断一个密钥是否是正确的(已知x,求y很容易),但是即使获取到密码锁系统,无法破解出正确的密钥是什么(已知y,求x很难)。

这种情况特别类似于一位想从山峰走到坡谷的盲人,他看不见坡谷在哪(无法逆向求解出Loss导数为0时的参数值),但可以伸脚探索身边的坡度(当前点的导数值,也称为梯度)。那么,求解Loss函数最小值可以这样实现:从当前的参数取值,一步步的按照下坡的方向下降,直到走到最低点。这种方法笔者称它为“盲人下坡法”即”梯度下降法“。

例:考虑只有两个参数 W5 和W9 的情况

net = Network(13)
losses = []
#只画出参数w5和w9在区间[-160, 160]的曲线部分,以及包含损失函数的极值
w5 = np.arange(-160.0, 160.0, 1.0)
w9 = np.arange(-160.0, 160.0, 1.0)
losses = np.zeros([len(w5), len(w9)])

#计算设定区域内每个参数取值所对应的Loss
for i in range(len(w5)):
    for j in range(len(w9)):
        net.w[5] = w5[i]
        net.w[9] = w9[j]
        z = net.forward(x)
        loss = net.loss(z, y)
        losses[i, j] = loss

#使用matplotlib将两个变量和对应的Loss作3D图
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)

w5, w9 = np.meshgrid(w5, w9)

ax.plot_surface(w5, w9, losses, rstride=1, cstride=1, cmap='rainbow')
plt.show()

在这里插入图片描述
观察上述曲线呈现出“圆滑”的坡度,这正是我们选择以均方误差作为损失函数的原因之一。图6 呈现了只有一个参数维度时,均方误差和绝对值误差(只将每个样本的误差累加,不做平方处理)的损失函数曲线图。

在这里插入图片描述
用均方误差好处如下:
(1)曲线的最低点是可导的。
(2)越接近最低点,曲线的坡度逐渐放缓,有助于通过当前的梯度来判断接近最低点的程度(是否逐渐减少步长,以免错过最低点)

实现梯度下降法的方案如下:
(1)随机的选一组初始值
(2)选取一个点使得误差更小
(3)重复步骤2,直到损失函数几乎不再下降

微积分的基础知识告诉我们,沿着梯度的反方向,是函数值下降最快的方向:函数在某一个点的梯度方向是曲线斜率最大的方向,但梯度方向是向上的,所以下降最快的是梯度的反方向。

计算梯度

定义损失函数如下:
在这里插入图片描述
考虑一个样本时:
在这里插入图片描述
查看每种数据尺度

x1 = x[0]
y1 = y[0]
z1 = net.forward(x1)
print('x1 {}, shape {}'.format(x1, x1.shape))
print('y1 {}, shape {}'.format(y1, y1.shape))
print('z1 {}, shape {}'.format(z1, z1.shape))

在这里插入图片描述

#依据上述公式计算w0的梯度
gradient_w0 = (z1 - y1) * x1[0]
print('gradient_w0 {}'.format(gradient_w0))

#计算w1的梯度
gradient_w1 = (z1 - y1) * x1[1]
print('gradient_w1 {}'.format(gradient_w1))
#以此类推
使用Numpy进行梯度计算

基于Numpy广播机制(对向量和矩阵计算如同对1个单一变量计算一样),可以更快速的实现梯度计算,
得到的是一个13维的向量,每个分量分别代表该维度的梯度。

gradient_w = (z1 - y1) * x1
print('gradient_w_by_sample1 {}, gradient.shape {}'.format(gradient_w, gradient_w.shape))

在这里插入图片描述
同理,计算多个样本梯度

x3 = x[2]
y3 = y[2]
z3 = net.forward(x3)
gradient_w = (z3 - y3) * x3
print('gradient_w_by_sample3 {}, gradient.shape {}'.format(gradient_w, gradient_w.shape))

# 注意这里是一次取出3个样本的数据,不是取出第3个样本
x3samples = x[0:3]
y3samples = y[0:3]
z3samples = net.forward(x3samples)

print('x {}, shape {}'.format(x3samples, x3samples.shape))
print('y {}, shape {}'.format(y3samples, y3samples.shape))
print('z {}, shape {}'.format(z3samples, z3samples.shape))

对于有N个样本的情形,我们可以直接使用如下方式计算出所有样本对梯度的贡献,这就是使用Numpy库广播功能带来的便捷。

z = net.forward(x)
gradient_w = (z - y) * x
print('gradient_w shape {}'.format(gradient_w.shape))
print(gradient_w)

在这里插入图片描述
上面gradient_w的每一行代表了一个样本对梯度的贡献。根据梯度的计算公式,总梯度是对每个样本对梯度贡献的平均值。
在这里插入图片描述

# axis = 0 表示把每一行做相加然后再除以总的行数
gradient_w = np.mean(gradient_w, axis=0)
print('gradient_w ', gradient_w.shape)
print('w ', net.w.shape)
print(gradient_w)
print(net.w)

在这里插入图片描述
np.mean函数时消除了第0维,因此我们为确保维数一致,使用代码如下:

gradient_w = gradient_w[:, np.newaxis]
print('gradient_w shape', gradient_w.shape)

在这里插入图片描述

计算梯度总代码
z = net.forward(x)
gradient_w = (z - y) * x
gradient_w = np.mean(gradient_w, axis=0)
gradient_w = gradient_w[:, np.newaxis]
gradient_w


gradient_b = (z - y)
gradient_b = np.mean(gradient_b)
# 此处b是一个数值,所以可以直接用np.mean得到一个标量
gradient_b

将上面计算w和b的梯度的过程,写成Network类的gradient函数,实现方法如下所示。

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        num_samples = error.shape[0]
        cost = error * error
        cost = np.sum(cost) / num_samples
        return cost
    
    def gradient(self, x, y):
        z = self.forward(x)
        gradient_w = (z-y)*x
        gradient_w = np.mean(gradient_w, axis=0)
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = (z - y)
        gradient_b = np.mean(gradient_b)
        
        return gradient_w, gradient_b

验证:

# 调用上面定义的gradient函数,计算梯度
# 初始化网络
net = Network(13)
# 设置[w5, w9] = [-100., -100.]
net.w[5] = -100.0
net.w[9] = -100.0

z = net.forward(x)
loss = net.loss(z, y)
gradient_w, gradient_b = net.gradient(x, y)
gradient_w5 = gradient_w[5][0]
gradient_w9 = gradient_w[9][0]
print('point {}, loss {}'.format([net.w[5][0], net.w[9][0]], loss))
print('gradient {}'.format([gradient_w5, gradient_w9]))

确定损失函数更小的点

下面我们开始研究更新梯度的方法。首先沿着梯度的反方向移动一小步,找到下一个点P1,观察损失函数的变化。

# 在[w5, w9]平面上,沿着梯度的反方向移动到下一个点P1
# 定义移动步长 eta
eta = 0.1
# 更新参数w5和w9
net.w[5] = net.w[5] - eta * gradient_w5
net.w[9] = net.w[9] - eta * gradient_w9
# 重新计算z和loss
z = net.forward(x)
loss = net.loss(z, y)
gradient_w, gradient_b = net.gradient(x, y)
gradient_w5 = gradient_w[5][0]
gradient_w9 = gradient_w[9][0]
print('point {}, loss {}'.format([net.w[5][0], net.w[9][0]], loss))
print('gradient {}'.format([gradient_w5, gradient_w9]))

eta:控制每次参数值沿着梯度反方向变动的大小,即每次移动的步长,又称为学习率。
大家可以思考下,为什么之前我们要做输入特征的归一化,保持尺度一致?这是为了让统一的步长更加合适。

在这里插入图片描述

封装train 函数
class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights,1)
        self.w[5] = -100.
        self.w[9] = -100.
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        num_samples = error.shape[0]
        cost = error * error
        cost = np.sum(cost) / num_samples
        return cost
    
    def gradient(self, x, y):
        z = self.forward(x)
        gradient_w = (z-y)*x
        gradient_w = np.mean(gradient_w, axis=0)
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = (z - y)
        gradient_b = np.mean(gradient_b)        
        return gradient_w, gradient_b
    
    def update(self, gradient_w5, gradient_w9, eta=0.01):
        net.w[5] = net.w[5] - eta * gradient_w5
        net.w[9] = net.w[9] - eta * gradient_w9
        
    def train(self, x, y, iterations=100, eta=0.01):
        points = []
        losses = []
        for i in range(iterations):
            points.append([net.w[5][0], net.w[9][0]])
            z = self.forward(x)
            L = self.loss(z, y)
            gradient_w, gradient_b = self.gradient(x, y)
            gradient_w5 = gradient_w[5][0]
            gradient_w9 = gradient_w[9][0]
            self.update(gradient_w5, gradient_w9, eta)
            losses.append(L)
            if i % 50 == 0:
                print('iter {}, point {}, loss {}'.format(i, [net.w[5][0], net.w[9][0]], L))
        return points, losses

# 获取数据
train_data, test_data = load_data()
x = train_data[:, :-1]
y = train_data[:, -1:]
# 创建网络
net = Network(13)
num_iterations=2000
# 启动训练
points, losses = net.train(x, y, iterations=num_iterations, eta=0.01)

# 画出损失函数的变化趋势
plot_x = np.arange(num_iterations)
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()

在这里插入图片描述

训练扩展到全部参数

面演示的梯度下降的过程仅包含w5和w9两个参数,但房价预测的完整模型,必须要对所有参数w和b进行求解

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        num_samples = error.shape[0]
        cost = error * error
        cost = np.sum(cost) / num_samples
        return cost
    
    def gradient(self, x, y):
        z = self.forward(x)
        gradient_w = (z-y)*x
        gradient_w = np.mean(gradient_w, axis=0)
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = (z - y)
        gradient_b = np.mean(gradient_b)        
        return gradient_w, gradient_b
    
    def update(self, gradient_w, gradient_b, eta = 0.01):
        self.w = self.w - eta * gradient_w
        self.b = self.b - eta * gradient_b
        
    def train(self, x, y, iterations=100, eta=0.01):
        losses = []
        for i in range(iterations):
            z = self.forward(x)
            L = self.loss(z, y)
            gradient_w, gradient_b = self.gradient(x, y)
            self.update(gradient_w, gradient_b, eta)
            losses.append(L)
            if (i+1) % 10 == 0:
                print('iter {}, loss {}'.format(i, L))
        return losses

# 获取数据
train_data, test_data = load_data()
x = train_data[:, :-1]
y = train_data[:, -1:]
# 创建网络
net = Network(13)
num_iterations=1000
# 启动训练
losses = net.train(x,y, iterations=num_iterations, eta=0.01)

# 画出损失函数的变化趋势
plot_x = np.arange(num_iterations)
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()

随机梯度下降法

在上述程序中,每次损失函数和梯度计算都是基于数据集中的全量数据。对于波士顿房价预测任务数据集而言,样本数比较少,只有404个。但在实际问题中,数据集往往非常大,如果每次都使用全量数据进行计算,效率非常低,通俗地说就是“杀鸡焉用牛刀”。

由于参数每次只沿着梯度反方向更新一点点,因此方向并不需要那么精确。一个合理的解决方案是每次从总的数据集中随机抽取出小部分数据来代表整体,基于这部分数据计算梯度和损失来更新参数,这种方法被称作随机梯度下降法(Stochastic Gradient Descent,SGD),核心概念如下:

mini-batch:每次迭代时抽取出来的一批数据被称为一个mini-batch。
batch_size:一个mini-batch所包含的样本数目称为batch_size。
epoch:当程序迭代的时候,按mini-batch逐渐抽取出样本,当把整个数据集都遍历到了的时候,则完成了一轮训练,也叫一个epoch。启动训练时,可以将训练的轮数num_epochs和batch_size作为参数传入。

# 获取数据
train_data, test_data = load_data()
train_data.shape

train_data中一共包含404条数据,如果batch_size=10,即取前0-9号样本作为第一个mini-batch,命名train_data1。

train_data1 = train_data[0:10]
train_data1.shape

使用train_data1的数据(0-9号样本)计算梯度并更新网络参数。

net = Network(13)
x = train_data1[:, :-1]
y = train_data1[:, -1:]
loss = net.train(x, y, iterations=1, eta=0.01)
loss

按此方法不断的取出新的mini-batch,并逐渐更新网络参数。

接下来,将train_data分成大小为batch_size的多个mini_batch,如下代码所示:将train_data分成 404/10+1=41 个 mini_batch,其中前40个mini_batch,每个均含有10个样本,最后一个mini_batch只含有4个样本。

batch_size = 10
n = len(train_data)
mini_batches = [train_data[k:k+batch_size] for k in range(0, n, batch_size)]
print('total number of mini_batches is ', len(mini_batches))
print('first mini_batch shape ', mini_batches[0].shape)
print('last mini_batch shape ', mini_batches[-1].shape)

通过大量实验发现,模型对最后出现的数据印象更加深刻。训练数据导入后,越接近模型训练结束,最后几个批次数据对模型参数的影响越大。为了避免模型记忆影响训练效果,需要进行样本乱序操作。

# 新建一个array
a = np.array([1,2,3,4,5,6,7,8,9,10,11,12])
a = a.reshape([6, 2])
print('before shuffle\n', a)
np.random.shuffle(a)
print('after shuffle\n', a)

在这里插入图片描述

观察运行结果可发现,数组的元素在第0维被随机打乱,但第1维的顺序保持不变。例如数字2仍然紧挨在数字1的后面,数字8仍然紧挨在数字7的后面,而第二维的[3, 4]并不排在[1, 2]的后面。将这部分实现SGD算法的代码集成到Network类中的train函数中,最终的完整代码如下。

# 获取数据
train_data, test_data = load_data()

# 打乱样本顺序
np.random.shuffle(train_data)

# 将train_data分成多个mini_batch
batch_size = 10
n = len(train_data)
mini_batches = [train_data[k:k+batch_size] for k in range(0, n, batch_size)]

# 创建网络
net = Network(13)

# 依次使用每个mini_batch的数据
for mini_batch in mini_batches:
    x = mini_batch[:, :-1]
    y = mini_batch[:, -1:]
    loss = net.train(x, y, iterations=1)

修改要点:

将每个随机抽取的mini-batch数据输入到模型中用于参数训练。训练过程的核心是两层循环:

第一层循环,代表样本集合要被训练遍历几次,称为“epoch”,代码如下:
for epoch_id in range(num_epochs):

第二层循环,代表每次遍历时,样本集合被拆分成的多个批次,需要全部执行训练,称为“iter (iteration)”,代码如下:
for iter_id,mini_batch in emumerate(mini_batches):

在两层循环的内部是经典的四步训练流程:前向计算->计算损失->计算梯度->更新参数
最终代码如下:

import numpy as np

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        #np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        num_samples = error.shape[0]
        cost = error * error
        cost = np.sum(cost) / num_samples
        return cost
    
    def gradient(self, x, y):
        z = self.forward(x)
        N = x.shape[0]
        gradient_w = 1. / N * np.sum((z-y) * x, axis=0)
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = 1. / N * np.sum(z-y)
        return gradient_w, gradient_b
    
    def update(self, gradient_w, gradient_b, eta = 0.01):
        self.w = self.w - eta * gradient_w
        self.b = self.b - eta * gradient_b
            
                
    def train(self, training_data, num_epochs, batch_size=10, eta=0.01):
        n = len(training_data)
        losses = []
        for epoch_id in range(num_epochs):
            # 在每轮迭代开始之前,将训练数据的顺序随机打乱
            # 然后再按每次取batch_size条数据的方式取出
            np.random.shuffle(training_data)
            # 将训练数据进行拆分,每个mini_batch包含batch_size条的数据
            mini_batches = [training_data[k:k+batch_size] for k in range(0, n, batch_size)]
            for iter_id, mini_batch in enumerate(mini_batches):
                #print(self.w.shape)
                #print(self.b)
                x = mini_batch[:, :-1]
                y = mini_batch[:, -1:]
                a = self.forward(x)
                loss = self.loss(a, y)
                gradient_w, gradient_b = self.gradient(x, y)
                self.update(gradient_w, gradient_b, eta)
                losses.append(loss)
                print('Epoch {:3d} / iter {:3d}, loss = {:.4f}'.
                                 format(epoch_id, iter_id, loss))
        
        return losses

# 获取数据
train_data, test_data = load_data()

# 创建网络
net = Network(13)
# 启动训练
losses = net.train(train_data, num_epochs=50, batch_size=100, eta=0.1)

# 画出损失函数的变化趋势
plot_x = np.arange(len(losses))
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()

飞浆高层API重写代码

#加载飞桨、Numpy和相关类库
import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import numpy as np
import os
import random

paddle:飞桨的主库,paddle 根目录下保留了常用API的别名,当前包括:paddle.tensor、paddle.framework目录下的所有API。

paddle.nn:组网相关的API,例如 Linear 、卷积 Conv2D 、 循环神经网络 LSTM 、损失函数 CrossEntropyLoss 、 激活函数 ReLU 等。

Linear:神经网络的全连接层函数,即包含所有输入权重相加的基本神经元结构。在房价预测任务中,使用只有一层的神经网络(全连接层)来实现线性回归模型。

paddle.nn.functional:与paddle.nn一样,包含组网相关的API,例如Linear、激活函数ReLu等。两者下的同名模块功能相同,运行性能也基本一致。 但是,paddle.nn下的模块均是类,每个类下可以自带模块参数;paddle.nn.functional下的模块均是函数,需要手动传入模块计算需要的参数。在实际使用中,卷积、全连接层等层本身具有可学习的参数,建议使用paddle.nn模块,而激活函数、池化等操作没有可学习参数,可以考虑直接使用paddle.nn.functional下的函数代替。

数据处理

不依赖于框架实现

def load_data():
    # 从文件导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=' ', dtype=np.float32)

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算train数据集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
                                 training_data.sum(axis=0) / training_data.shape[0]
    
    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avg_values
    max_values = maximums
    min_values = minimums
    avg_values = avgs

    # 对数据进行归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data

模型设计

模型定义的实质是定义线性回归的网络结构,飞桨建议通过创建Python类的方式完成模型网络的定义,该类需要继承paddle.nn.Layer父类,并且在类中定义init函数和forward函数。forward函数是框架指定实现前向计算逻辑的函数,程序在调用模型实例时会自动执行forward方法。在forward函数中使用的网络层需要在init函数中声明。

实现过程分如下两步:

定义init函数:在类的初始化函数中声明每一层网络的实现函数。
定义forward函数:构建神经网络结构,实现前向计算过程,并返回预测结果,在本任务中返回的是房价预测结果。

class Regressor(paddle.nn.Layer):

    # self代表类的实例自身
    def __init__(self):
        # 初始化父类中的一些参数
        super(Regressor, self).__init__()
        
        # 定义一层全连接层,输入维度是13,输出维度是1
        self.fc = Linear(in_features=13, out_features=1)
    
    # 网络的前向计算
    def forward(self, inputs):
        x = self.fc(inputs)
        return x

训练配置

在这里插入图片描述
1.声明定义好的回归模型Regressor实例,并将模型的状态设置为训练。
2.使用load_data函数加载训练数据和测试数据。
3.设置优化算法和学习率,优化算法采用随机梯度下降SGD,学习率设置为0.01。
训练配置代码如下所示:

# 声明定义好的线性回归模型
model = Regressor()
# 开启模型训练模式
model.train()
# 加载数据
training_data, test_data = load_data()
# 定义优化算法,使用随机梯度下降SGD
# 学习率设置为0.01
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

在基于Python实现神经网络模型的案例中,我们为实现梯度下降编写了大量代码,而使用飞桨框架只需要定义SGD就可以实现优化器设置,大大简化了这个过程。

训练过程

训练过程采用二层循环嵌套方式:

内层循环: 负责整个数据集的一次遍历,采用分批次方式(batch)。假设数据集样本数量为1000,一个批次有10个样本,则遍历一次数据集的批次数量是1000/10=100,即内层循环需要执行100次。

for iter_id, mini_batch in enumerate(mini_batches):

外层循环: 定义遍历数据集的次数,通过参数EPOCH_NUM设置。

for epoch_id in range(EPOCH_NUM):

batch的取值会影响模型训练效果。batch过大,会增大内存消耗和计算时间,且训练效果并不会明显提升(因为每次参数只向梯度反方向移动一小步,所以方向没必要特别精确);batch过小,每个batch的样本数据将没有统计意义,计算的梯度方向可能偏差较大。由于房价预测模型的训练数据集较小,我们将batch为设置10。

EPOCH_NUM = 10   # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小

# 定义外层循环
for epoch_id in range(EPOCH_NUM):
    # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
    np.random.shuffle(training_data)
    # 将训练数据进行拆分,每个batch包含10条数据
    mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
    # 定义内层循环
    for iter_id, mini_batch in enumerate(mini_batches):
        x = np.array(mini_batch[:, :-1]) # 获得当前批次训练数据
        y = np.array(mini_batch[:, -1:]) # 获得当前批次训练标签(真实房价)
        # 将numpy数据转为飞桨动态图tensor形式
        house_features = paddle.to_tensor(x)
        prices = paddle.to_tensor(y)
        
        # 前向计算
        predicts = model(house_features)
        
        # 计算损失
        loss = F.square_error_cost(predicts, label=prices)
        avg_loss = paddle.mean(loss)
        if iter_id%20==0:
            print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))
        
        # 反向传播
        avg_loss.backward()
        # 最小化loss,更新参数
        opt.step()
        # 清除梯度
        opt.clear_grad()

保存模型

# 保存模型参数,文件名为LR_model.pdparams
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")

测试模型

通过load_one_example函数实现从数据集中抽一条样本作为测试样本,具体实现代码如下所示。

def load_one_example():
    # 从上边已加载的测试集中,随机选择一条作为测试数据
    idx = np.random.randint(0, test_data.shape[0])
    idx = -10
    one_data, label = test_data[idx, :-1], test_data[idx, -1]
    # 修改该条数据shape为[1,13]
    one_data =  one_data.reshape([1,-1])

    return one_data, label

# 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()

# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式 
one_data = paddle.to_tensor(one_data)
predict = model(one_data)

# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]

print("Inference result is {}, the corresponding label is {}".format(predict.numpy(), label))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值