DFS和BFS总结和代码演示(详解)

1:BFS

广度优先搜索类似于树的层次遍历过程。它需要借助一个队列来实现。如图2-1-1所示,要想遍历从v0到v6的每一个顶点,我们可以设v0为第一层,v1、v2、v3为第二层,v4、v5为第三层,v6为第四层,再逐个遍历每一层的每个顶点

代码演示

这里的代码演示 我是将顶点的序号从 0 开始的

#include<bits/stdc++.h>
using namespace std;

//一些量的定义
queue<int> q;
#define MaxSize 100
bool visited[100];//用于表示已经访问过的结点 

//邻接矩阵储存表示
typedef struct GNode* PtrGraph;
typedef struct GNode{
    int NV;
    int NE;
    int Data[MaxSize][MaxSize];
}gnode;

//创建图
void creatGraph(PtrGraph G){
    int i,j;
     cin >> G->NV >> G->NE;
     //邻接矩阵初始化
     for(int i = 0; i < G->NV; i++){
         for(int j = 0; j < G->NV; j++){
             G->Data[i][j] = 0;//两点之间没有边相连 用 0 来表示 ,如果有边用 1 来表示
         }
     }

     for(int k = 0; k < G->NE; k++){
         cin >> i >> j;
         G->Data[i][j] = 1;
         G->Data[j][i] = 1;//两点之间有边 赋值为一;
     }
}

//BFS遍历
void BfsGraph(PtrGraph G,int a){
     //a = 0;//表示从0这个点开始遍历;
     cout << a << ' ';//将第一个点打印出来;
     
     visited[a] = 1;//表示已经访问过1 访问过也就是代表已经可以遍历了
     q.push(a);//将 a 入队;

     while(!q.empty()){
         int u = q.front();
         q.pop();
         
         for(int i = 0; i < G->NV; i++){
             if(visited[i] != 1 && G->Data[u][i] !=0 ){

                 cout << i << ' ';
                 visited[i] = 1; //表示已经访问过
                 q.push(i);    //将 i 入队 

             }
         }
     }     
}

// 非连通图的BFS遍历
void BFS_Noconnected(PtrGraph G){
    
    for(int i = 0; i < G->NV; i++){
        visited[i] = { 0 };//将图中的点初始化为0
    }

    for(int i = 0; i < G->NV; i++){ // 将图中未访问过的结点 开始访问
        if(visited[i] != 1){
            BfsGraph(G,i);
        }
    }

}

int main(){
	PtrGraph G;
    G = (PtrGraph)malloc(sizeof(struct GNode));
    creatGraph(G);

    BfsGraph(G,0);//表示要从0 开始遍历;
} 

//6 7
//0 1
//0 2
//0 4
//1 4
//2 5
//3 4         
//3 5   

//正确结果 0 1 2 4 5 3 

在这里插入图片描述

2:DFS

深度优先搜索类似于树的先序遍历,具体过程如下:

准备工作:创建一个visited数组,用于记录所有被访问过的顶点。
1.从图中v0出发,访问v0。

2.找出v0的第一个未被访问的邻接点,访问该顶点。以该顶点为新顶点,重复此步骤,直至刚访问过的顶点没有未被访问的邻接点为止。

3.返回前一个访问过的仍有未被访问邻接点的顶点,继续访问该顶点的下一个未被访问领接点。

4.重复2,3步骤,直至所有顶点均被访问,搜索结束。

实例演示

#include<bits/stdc++.h>
using namespace std;

//一些量的定义
queue<int> q;
#define MaxSize 100
bool visited[100];//用于表示已经访问过的结点 

//邻接矩阵储存表示
typedef struct GNode* PtrGraph;
typedef struct GNode{
    int NV;
    int NE;
    int Data[MaxSize][MaxSize];
}gnode;

//创建图
void creatGraph(PtrGraph G){
    int i,j;
     cin >> G->NV >> G->NE;
     //邻接矩阵初始化
     for(int i = 0; i < G->NV; i++){
         for(int j = 0; j < G->NV; j++){
             G->Data[i][j] = 0;//两点之间没有边相连 用 0 来表示 ,如果有边用 1 来表示
         }
     }

     for(int k = 0; k < G->NE; k++){
         cin >> i >> j;
         G->Data[i][j] = 1;
         G->Data[j][i] = 1;//两点之间有边 赋值为一;
     }
}

//DFS遍历 需要用到 递归 因为当遍历到一定程度 因为某个结点的邻接点均被访问过了 所以需要返回上一个访问过的结点 访问其未被访问过的邻接点
//(同理 若都被访问过则再次返回)
void DFS_Graph(PtrGraph G,int a){
    
    cout << a <<' '; //每次的打印就已经代表的访问顺序;
    visited[a] = 1;//代表已经访问过了

    for( int i = 0; i < G->NV; i++){
         
         if( visited[i] != 1 && G->Data[a][i] == 1)//DFS 遍历的专利  从一个指定的顶点出发 开始的深度遍历 
              DFS_Graph(G,i);//从a的邻接点开始遍历
    }

   // cout << endl;
}



// 非连通图的DFS遍历
void DFS_Noconnected(PtrGraph G){
    
    for(int i = 0; i < G->NV; i++){
        visited[i] = { 0 };//将图中的点初始化为0
    }

    for(int i = 0; i < G->NV; i++){ // 将图中未访问过的结点 开始访问
        if(visited[i] != 1){
            DFS_Graph(G,i);
        }
    }

}

int main(){
	PtrGraph G;
    G = (PtrGraph)malloc(sizeof(struct GNode));
    creatGraph(G);

    DFS_Graph(G,0);//表示要从0 开始遍历;
} 

//6 7
//0 1
//0 2
//0 4
//1 4
//2 5
//3 4         
//3 5   

//遍历顺序:0 1 4 3 5 2 

在这里插入图片描述

3:补充

如果是非联通图 则直接调用代码当中的 DFS_Noconnected函数即可

4:更深入的学习

我是学了大佬的博客 在这里给大家分享出去:添加链接描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天向上的菜鸡杰!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值