7-1 矩阵链相乘问题 (20 分)(思路+详解+题目解析) 动态规划做法

一:题目:

在这里插入图片描述

输入样例:
在这里给出一组输入。例如:

5
30 35 15 5 10 20

输出样例:
在这里给出相应的输出。例如:

11875

二:基本解析

1.基本的动态规划知识:

1):求解过程是多阶段决策过程,每步处理一个子问题,可用于求解组合优化的问题
含义:通过把复杂的原问题分解为相对简单的的子问题的方法
(2):优化原则:一个最优决策序列的任何子序列本身一定是相对于子序列的初始和结束状态的最优决策序列
(3):动态规划有哪些特征(判断是否是动态规划的关键)
重叠子问题,最优子结构,无后效性
◆重叠子问题:子问题重复出现
◆最优子结构:一个问题的最优解包含其子问题的最优解
◆无后效性:某阶段的状态一旦确定,则此后过程的演变不再受此前各种状态及决策的影响。

(4):动态规划设计要素
1>.问题建模,优化的目标函数是什么?约束条件是什么?
2>.如何划分子问题(边界) ?
3>.问题的优化函数值与子问题的优化函数值存在着什么依赖关系?(递推方程)
4>.是否满足优化原则?
5.>最小子问题怎样界定?其优化函数值,即初值等于什么?

2:关于本题的矩阵乘法和递推方程的得出

在这里插入图片描述

3:实例演示

在这里插入图片描述

三:思路

思路:这里在考虑的的时候,因为是多个矩阵相乘,求的最小乘法次数,
比如 A1A2A3A4, 那么根据划分的不同,那么其乘法顺序也会不同,继而所求的乘法次数也不一样
划分:((A1
A2)*A3) *A4 等等,那么再求解最小乘法次数的时候,这就涉及到是个
动态的过程
在用 动态划分的思想做的时候,先创建一个二维数组,用来存放不同个数矩阵相乘的
最小乘法次数,然后根据划分 来求得最小的乘法次数

四:上码

/*
	思路:这里在考虑的的时候,因为是多个矩阵相乘,求的最小乘法次数,
		  比如 A1*A2*A3*A4, 那么根据划分的不同,那么其乘法顺序也会不同,继而所求的乘法次数也不一样
		 划分:((A1*A2)*A3) *A4 等等,那么再求解最小乘法次数的时候,这就涉及到是个
		 动态的过程 
		 在用 动态划分的思想做的时候,先创建一个二维数组,用来存放不同个数矩阵相乘的
		 最小乘法次数,然后根据划分 来求得最小的乘法次数 
  */

#include<bits/stdc++.h>
using namespace std;

int N;
int p[1000];
int m[1000][1000];  //m[i][j] 即表示:A(i)A(i+1)(i+2)...A(j); 

int minimum_num(){
	//初始化矩阵,一个矩阵乘法次数为0 
	for(int i = 1; i <= N; i++)
	m[i][i] = 0;
	
	//向二维数组中添加数据,并更新(求最小),
	
	for(int i = N; i >= 1; i--){//这里的i 从 N 先开始,不能从1 先开始,因为一旦从1开始  
							    //那么的话 m[1][N],就在第一次循环便求出,那么m[1][N]在划分 
							    //更新的时候,其中的一些值尚未求出来。如果从N开始,那么最后求得是
								//m[1][N],这样就可以用到了前面已经求出的一些值
		for(int j = i + 1; j <= N; j++){
			//任何一个m[i][j],均可这样先表示出来 即从 i 后面开始划分 
			m[i][j] = m[i][i] + m[i+1][j] + p[i-1]*p[i]*p[j]; 
			
			//划分更新
			for(int k = i + 1;k < j; k++){//这里 k = i + 1 ,表示的是从i+1后面开始划分,
										 //因为上方第一次表示出来的时候,就已经是从 i 后面划分了  
				int temp = m[i][k] + m[k+1][j] + p[i-1] * p[k] * p[j];
				
				if(temp < m[i][j]){
					m[i][j] = temp;
				}
					
			} 		
		}							 
		
	} 
	
	return m[1][N];

}


int main(){
	
	cin >> N;
	
	for(int i = 0; i < N + 1; i++){
		cin >> p[i];
	}
	
	int result = minimum_num();
	
	cout << result;
	
} 

在这里插入图片描述
加油 宝贝!!!!!!!!!!!

  • 16
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
矩阵问题是一个经典的动态规划问题,其目标是找到一种最优的方式来计算给定的一组矩阵的连乘积。这个问题可以通过动态规划算法来解决。 动态规划算法的基本思想是将问题解成更小的子问题,并使用已知的信息来计算更大的问题。在矩阵问题中,我们可以将问题解成计算两个矩阵的乘积的子问题,并使用已知的信息来计算更大的问题。 具体来说,我们可以定义一个二维数组m,其中m[i][j]表示从第i个矩阵到第j个矩阵的最小计算代价。我们还可以定义一个二维数组s,其中s[i][j]表示从第i个矩阵到第j个矩阵的最优计算次序。 接下来,我们可以使用以下递归公式来计算m和s: m[i][j] = 0 (i = j) m[i][j] = min{m[i][k] + m[k+1][j] + ri*ck*cm} (i <= k < j) 其中,ri和ci别表示第i个矩阵的行数和列数,cm表示两个矩阵相乘的计算代价。 使用上述递归公式,我们可以计算出所有的m[i][j]和s[i][j]。最终,我们可以通过s数组来构造出最优的计算次序,并使用m数组来计算最小的计算代价。 下面是一个Python实现的例子: ```python def matrix_chain_order(p): n = len(p) - 1 m = [[0] * n for i in range(n)] s = [[0] * n for i in range(n)] for l in range(2, n+1): for i in range(n-l+1): j = i + l - 1 m[i][j] = float('inf') for k in range(i, j): q = m[i][k] + m[k+1][j] + p[i]*p[k+1]*p[j+1] if q < m[i][j]: m[i][j] = q s[i][j] = k return m, s def print_optimal_parens(s, i, j): if i == j: print("A{}".format(i+1), end='') else: print("(", end='') print_optimal_parens(s, i, s[i][j]) print_optimal_parens(s, s[i][j]+1, j) print(")", end='') p = [30, 35, 15, 5, 10, 20, 25] m, s = matrix_chain_order(p) print_optimal_parens(s, 0, len(p)-2) print("\nMinimum cost:", m[0][len(p)-2]) ``` 输出结果为: ``` ((A1(A2A3))((A4A5)A6)) Minimum cost: 15125 ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天向上的菜鸡杰!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值