7-6 区间覆盖 (10 分)(思路+详解)Come 宝!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

这篇博客讨论了如何在实数线上用固定长度的闭区间最少覆盖给定点的问题。首先对点进行排序,然后以第一个点为基准,比较相邻点之间的距离,当距离大于等于区间长度时增加区间数。特别处理最后一个点,确保所有点都被覆盖。给出的C++代码实现了这一算法,并给出了两个测试用例。
摘要由CSDN通过智能技术生成

一:题目

设 x 

1

,x
2

,…,x
n

是实直线上的n个点。用固定长度的闭区间覆盖这n个点,至少需要多少个这样的固定长度闭区间?

输入格式:
第1行有2个正整数n(n<50)和k,表示有n个点,且固定长度闭区间的长度为k。

接下来的1行中有n个整数 a
i

(−2000<a
i

<2000) ,表示n个点在实直线上的坐标(可能相同)。

输出格式:
最少区间数。

输入样例:

7 3
1 2 3 4 5 -2 6

输出样例:

3

二:思路:

思路:
1.首先先排序
2.然后确定第一个元素为标杆,让后一个元素减去前一个元素,如果其大于等于k,那么
区间数加一,且标杆更新为减去前一个元素使其大于等于k的元素;
3.但要对最后不满足条件的元素单独处理

三:上码

/**
	思路:1.首先先排序
		  2.然后确定第一个元素为标杆,让后一个元素减去前一个元素,如果其大于等于k,那么
		  	区间数加一,且标杆更新为减去前一个元素使其大于等于k的元素;
		  3.但要对最后不满足条件的元素单独处理	
			   
*/

#include<bits/stdc++.h>
using namespace std;

int main(){
	
	int N,k;
	vector<int> v;
	
	cin >> N >> k;
	
	for(int i = 0; i < N; i++){
		  int nums;
		  cin >> nums;
		  v.push_back(nums);
	}
	
	sort(v.begin(),v.end());
	
	int temp = v[0];
	int count = 0;
	for(int i = 1; i < N; i++){
		
		if(v[i] - temp >= k){
			temp = v[i];
			count++;
		//	cout << temp << "wyj";
		}
		
		if(v[N-1] - temp < k && i != N-1){ //这里是为了处理剩余的元素也得占一个区间但其不满足上一个if条件  
			count++;                      //但如果是最后一个元素那就不用统计进去了 
			break;
		} 
		
	}
	//count++;
	cout << count;
	
	
} 


//测试用例1 
//7 3
//1 2 3 4 10 -2 20

//测试用例2
//7 3
//1 2 3 4 5 -2 6 

在这里插入图片描述

加油 宝!!!!!!!!!!!!!!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天向上的菜鸡杰!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值