WorldPop | 2000-2020年全球100m人口密度数据(附GEE代码)

1. 数据说明

WorldPop Global Project Population Data提供全球高分辨率、当代的人口分布数据,成为衡量人口增长影响、监测变化以及规划干预措施的关键基础。该项目旨在通过公开透明、同行评审的方法,为各领域提供详细且开放获取的人口分布数据。WorldPop基于最新的普查数据,将行政单元内的总人口数,通过机器学习算法,结合人口密度与多种地理空间协变量之间的关系,重新分配至约100x100米的栅格单元。核心算法为基于随机森林的达西方法重分布,以此实现人口分布的细化估算。

2. 数据获取

官网链接:https://www.worldpop.org/
GEE数据集:ee.ImageCollection("WorldPop/GP/100m/pop")

3. GEE代码

本次分享GEE代码,可以根据自己的研究区生成图表及其对应的栅格数据。

 

 

 

 

<think>好的,我现在需要回答用户关于如何在Google Earth Engine (GEE) 中引用长江20002020数据的问题。首先,用户可能想获取长江流域的边界数据或者时间序列遥感数据,比如水文、植被等。我需要考虑GEE中现有的数据集,以及如何筛选时间和空间范围。 首先,用户提到“长江”,可能需要长江流域的边界。GEE的公有数据集中是否有这样的矢量数据?例如FAO的全球主要流域数据集(WWF HydroSHEDS)可能包含长江流域。我需要确认数据集名称和调用方法。 然后,时间范围是2000-2020。假设用户想获取该时间段内的遥感数据,比如MODIS的植被指数或地表水数据。例如MODIS/006/MOD13A2是植被指数数据集,时间范围符合。或者JRC地表水数据集可能适合分析水域变化。 接下来是数据筛选。在GEE中,通常用filterDate和filterBounds来筛选时间和空间。用户需要将长江流域的几何作为区域进行筛选。代码示例可能需要先加载流域数据,然后根据该区域和日期过滤其他数据集。 另外,用户可能需要导出数据或进行时间序列分析。例如,计算NDVI的平均值随时间变化,并生成图表。这部分可能需要用到图像集合的映射函数,比如.map()来迭代每幅图像,然后使用reduceRegion进行统计。 关于代码示例,可能需要分步骤:加载长江流域矢量数据,加载目标数据集,应用时间和空间过滤,进行处理(如统计),最后可视化或导出。需要注意的是,引用外部数据集可能需要正确的ImageCollection ID,例如ERA5_LAND数据可能需要不同的处理方式,但用户的问题主要围绕长江的数据,可能更关注边界和遥感数据。 同时,用户提供的引用中有提到ECMWF/ERA5_LAND数据集,但用户的问题是关于长江的数据,可能涉及地表参数,但不确定是否需要关联。可能需要提醒用户如果需要气象数据,可以结合ERA5_LAND,但主要问题是如何引用长江相关数据。 最后,确保代码符合GEE的JavaScript API语法,因为用户可能使用Code Editor。如果用户需要Python代码,可能需要使用ee库,但通常GEE教程更多使用JavaScript示例。不过用户之前的问题中有Python代码示例,但GEE主要支持JavaScript和Python客户端库,需要确认用户需要哪种。 综上,步骤可能是: 1. 获取长江流域矢量边界。 2. 加载所需时间范围的遥感数据集。 3. 空间和时间筛选。 4. 处理数据(如统计、时间序列分析)。 5. 可视化或导出结果。 需要检查各个步骤的具体实现,并确保示例代码正确无误。例如,使用HydroSHEDS的流域数据,然后结合MOD13A2进行NDVI分析。</think>### Google Earth Engine中引用长江2000-2020数据的方法 #### 1. **获取长江流域边界数据** 在GEE中,可以通过**WWF HydroSHEDS数据集**获取长江流域的矢量边界。该数据集提供了全球主要流域的划分: ```javascript var basin = ee.FeatureCollection("WWF/HydroSHEDS/v1/Basins/hybas_5") .filter(ee.Filter.eq('HYBAS_ID', 1040060050')); // 根据HYBAS_ID筛选长江流域 ``` `HYBAS_ID`需要根据长江的具体编码确定,可通过属性筛选或查找文档确认[^4]。 #### 2. **加载时间序列遥感数据** 以**MODIS植被指数(MOD13A2)**为例,筛选2000-2020数据: ```javascript var modis = ee.ImageCollection('MODIS/006/MOD13A2') .filterDate('2000-01-01', '2020-12-31') .filterBounds(basin); // 根据长江流域空间筛选 ``` #### 3. **数据分析与可视化** 计算区域内NDVI的均值并绘制时间序列: ```javascript // 定义统计函数 var calculateMean = function(image) { var mean = image.reduceRegion({ reducer: ee.Reducer.mean(), geometry: basin, scale: 1000, maxPixels: 1e9 }); return image.set('date', image.date().format('YYYY-MM-dd')).set('ndvi_mean', mean.get('NDVI')); }; // 应用函数并提取结果 var timeSeries = modis.map(calculateMean); var chart = ui.Chart.feature.byFeature(timeSeries, 'date', 'ndvi_mean') .setChartType('LineChart') .setOptions({title: '长江流域NDVI均值(2000-2020)'}); print(chart); ``` #### 4. **导出数据(可选)** 将处理后的数据导出至Google Drive: ```javascript Export.image.toDrive({ image: modis.mean().clip(basin), // 导出多平均NDVI description: 'Yangtze_NDVI_2000-2020', scale: 1000, region: basin.geometry() }); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS遥感数据处理应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值