(docker) 进入容器安装miniconda3,使用conda配置训练环境

1.下载Miniconda 

Miniconda — Anaconda documentation

2.环境配置

完成安装后,进行环境配置
问题:主要解决miniconda无法在终端执行source activate激活进入miniconda环境,出现报错-bash: activate:No such file/
解决方案:
1.修改~/.bashrc

sudo vi ~/.bashrc

2.添加以下内容

export PATH=/root/miniconda3/bin:$PATH

注:路径换成自己的安装路径

       如果有此命令,则不添加,进入3

3.退出编辑并保存

按键Esc,输入:wq

4.更新~/.bashrc

source ~/.bashrc

5.激活miniconda环境

source activate


注意:在第2步添加内容的时候,不可以写成:export PATH=$PATH:/root/miniconda3/bin,主要是因为系统会先遍历$PATH,再遍历/root/miniconda3/bin,如果在$PATH有其他conda环境,则会激活的是该环境,并非为我们的目标路径环境。

3.创建自己conda环境,需要配置清华镜像

anaconda | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

编辑./condarc文件

vi .condarc

 按键i进入输入模式,将以下内容复制进去

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/

按键Esc,输入:wq 退出并保存编辑

接下来就可以进行下一步的环境搭建啦!

### 如何在 Docker安装配置 Miniconda3 #### 创建并启动带有 Miniconda3Docker 容器 为了在 Docker使用 Miniconda3,可以通过官方镜像来快速搭建环境。首先,拉取 ContinuumIO 提供的 Miniconda3 镜像: ```bash docker pull continuumio/miniconda3 ``` 接着,创建一个新的交互式容器实例以便于后续的操作: ```bash docker run -it --name "miniconda_container" continuumio/miniconda3 /bin/bash ``` 这一步骤使得可以在基于所选镜像的新容器内部获得一个 Bash shell 访问权限[^1]。 #### 在 Docker 容器中管理 Conda 虚拟环境 一旦进入容器内的 Shell 后,就可以如同本地机器上那样利用 `conda` 命令来进行 Python 版本的选择以及依赖包的管理工作了。例如,要建立名为 `myenv` 并指定 Python 3.8 的新环境可执行如下指令: ```bash conda create -n myenv python=3.8 ``` 之后,激活这个新建好的环境: ```bash conda activate myenv ``` 此时便处于新的隔离开发空间之中,在这里可以安全地试验不同的库版本而不会影响到系统的其他部分。 对于那些希望加速软件包下载过程或是位于中国地区的开发者来说,设置国内源如清华大学开源软件镜像是个不错的选择。编辑当前用户的 `.condarc` 文件加入清华 TUNA 源作为默认渠道能够有效提升获取资源的速度: ```yaml channels: - defaults show_channel_urls: true ``` 上述 YAML 格式的配置片段应当被追加至 `$HOME/.condarc` 文档里[^2]。 #### 解决常见问题:Conda 环境激活失败 如果遇到无法正常调用 `activate` 或者提示找不到该命令的情况,则可能是由于路径变量未正确加载所致。一种常见的修正方法就是更新个人的 `.bashrc` 文件以确保每次登录时都会自动导入必要的脚本文件: ```bash echo ". $CONDA_PREFIX/etc/profile.d/conda.sh" >> ~/.bashrc source ~/.bashrc ``` 这段代码会向 `.bashrc` 添加一行用于初始化 conda 初始化脚本,并立即应用更改使它们生效[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值