大模型的 "Token" 就像语言的小积木块 🧩
想象你要拼乐高,最小的单位就是一个个小积木。对大模型(比如ChatGPT)来说,Token 就是它理解语言的最小积木块,可能是:
-
英文:一个单词(比如 "apple")、半个单词(比如 "un-" 或 "-happy"),甚至标点符号
-
中文:通常是一个字(比如 "苹"、"果"),或者常见的词语(比如 "苹果")
🔍 举个栗子:
-
句子 "我爱吃苹果" 会被拆成:
["我", "爱", "吃", "苹果"]
(4个token) -
英文 "Hello!" 可能拆成:
["Hello", "!"]
(2个token)
🤔 为什么要用 Token?
直接处理整句话太复杂,拆成小碎片后,模型能像拼图一样:
1️⃣ 给每个token编号(比如“苹果”=12345)
2️⃣ 分析碎片之间的关系(比如“吃”后面常接食物)
3️⃣ 组合出合理的回答
⚡ 关键特点:
-
数量有限:模型能识别的token总数有限(比如几万个)
-
影响输入长度:模型一次能处理的token数有限(比如GPT-4最多约32k个token)
-
影响成本:通常处理token越多,计算量越大
下次你看到大模型限制"输入不能超过XXX字",其实就是token数量的限制哦! 🚀