- 博客(25)
- 收藏
- 关注
原创 C语言作业-Day9
x[4][4]这个元素的地址是Oxf8b82140,则x[4][9]的地址是Oxf8b82140+5 = Oxf8b82145,它与x[9][9]这个元素刚好差5行,所以每行的元素个数为( Oxf8b8221c- Oxf8b82145)/5=d7(十进制245)/5=43,所以x[7][9]的地址是x[4][9]+3*43(十六进制81)= Oxf8b821c6,x[7][7]的地址=x[7][9-2]= Oxf8b821c4。首先p数组是里面有4个元素,每个元素的值都是一个地址,p[3]指向a[9],
2024-01-03 20:29:32 439 2
原创 C语言作业-Day8
一、选择题1、如下程序的运行结果是( )1. C语言字符串以'\0'结尾,扫描到即结束,故字符串打印的内容只有"ab"不会溢出!答案:D2、若有定义: int a[2][3];,以下选项中对 a 数组元素正确引用的是( )int a[2][3] 行坐标数字:0,1 列坐标数字:0,1,2答案:D3、在下面的字符数组定义中,哪一个有语法错误( )char a[10]定义的是长度为10的字符数组,如果是想初始化数组中内容全为'5'那应该是char a[10]={'5'};
2023-12-29 17:18:41 868
原创 C语言作业-Day7
1、以下对C语言函数的有关描述中,正确的有【多选】( ) B:函数的实参和形参的命名一样并不会直接产生影响,但是这可能会引起一些混淆和可读性方面的问题。 形参:形式参数,函数明后括号中的值,调完后自动销毁。 实参:实际参数,真实传给函数的值,必须有确切的值。形参实例化之后其实相当于实参的一份临时拷贝。 举例:引用(实参a, 形参b)则A对,B错,C错。如果形参类型不是引用,则函数调用时会创建一个临时对象(即形参)并赋值(实参的值),此时就是一个变量的定义,定义分配内存代码实现了递
2023-12-25 15:13:34 897
原创 C语言作业-Day6
当break语句用于do-while、for、while循环语句中时,可使程序终止循环而执行循环后面的语句,即满足条件时便跳出循环。for语句中的条件判断语句(expr2):i || i++ < 5 是个“逻辑或”语句,逻辑或语句规则:两边的判断语句有以一方为真即可。B: 当break出现在循环体中的switch语句体内时,其作用是跳出该switch语句体,并中止循环体的执行。A: 由于do-while循环中循环体语句只能是一条可执行语句,所以循环体内不能使用复合语句。
2023-12-20 15:30:57 880
原创 C语言作业-Day5
一、选择题1、如下程序的功能是( )A: 测字符数组ch的长度 B: 将数字字符串ch转换成十进制数C: 将字符数组ch中的小写字母转换成大写 D: 将字符数组ch中的大写字母转换成小写从for循环语句开始看,其意思是:初始化j=0;字符j 不为'\0'它就会遍历下去,所以for循环会将字符串ch给遍历一遍。接下来进入if条件判断语句,其判断条件是:j的范围在A~Z之间。
2023-12-13 15:13:38 52
原创 C语言作业-Day4
(2)中的for语句,初始化j=n,循环继续条件为j>i,且每次循环j减1。①当i=0时,走到第二层循环,那么此时循环继续进行的条件就变成了j>0,j被初始化为n,每次循环j减1。②当i=1时,走到第二层循环,那么此时循环继续进行的条件就变成了j>1,j又会被初始化为n,那么循环的次数就会是n-1。=n为真,来到循环2判断m>n为真, 执行m=m-n;B选项,在for循环中,初始化min=0,而循环条件为min>0,因此循环一次都不会进行,更不会走到if的判断中。(1)中的for语句易发现循环的次数为n。
2023-12-11 20:29:43 58
原创 C语言作业-Day3
如果 const 位于 * 的左侧,则 const 就是用来修饰指针所指向的变量,即指针指向为常量;第一个参数是一维数组,其中 char c[10] ,c 是个数组,数组名 c 就是个地址,因此直接传入 c。分析:fun 的原型是int fun(char b[10], int &a),有两个参数。①先算 a-=a*a 等价于 a=a-a*a =3-3*3 =-6,此时a的值为-6。表达式2值为真,循环,为假,不循环;②再算 a+=-6 等价于 a=a+(-6) =(-6)+(-6) =-12。
2023-12-07 15:37:33 66 1
原创 C语言作业-Day2
1、将NUM替换后得到:(M+1)*M/22、将M替换后得到:(2+1+1)*2+1/2,3、计算:/ 取整数部分即可 %d打印,(8.5)只用打印整数部分答案:B3、如下函数的 f(1) 的值为( )
2023-12-07 14:46:33 61 1
原创 C语言作业-Day1
选项考查转义字符,有如下格式,但八进制数字是0-7,没有8,故B选项中'\8'是错误的 \ddd ddd表示1到3个八进制数 如:\130 转义为 字符X。2、typedef int* int_ptr相当于是给int*取了个叫int_ptr的类型,是一个将int和*联合在一起的整体,故c,d为指针变量。(a++):(a--)的意思是,M(表达式)为真(M=0为真)即执行a++,为假执行a--。(a++):(a--) ,则其中表达式 M ( )A选项,M==0,判断意义为:M=0为真,与题意相违背,错。
2023-12-06 17:05:25 63 1
原创 组会论文翻译加思路整理:BiFormer: Vision Transformer with Bi-Level Routing Attention
如果要节省显存,加快计算速度,那么一个基本的思路就是打下计算量。
2023-11-08 15:46:20 1442 4
原创 组会文章思路整理&ppt:BiFormer: Vision Transformer with Bi-Level Routing Attention
1、文章阅读整理2、ppt整理
2023-11-08 14:06:16 215 2
原创 组会文章思路整理ppt:No More Strided Convolutions or Pooling:A New CNN Building Block for Low-ResolutionImage
2023-10-17 16:15:48 89
原创 组会论文:SPD:No More Strided Convolutions or Pooling:A New CNN Building Block for Low-ResolutionImage
2023-10-17 16:12:29 369
原创 组会文章思路整理:Dropout :A Simple Way to Prevent Neural Networks fromOverfitting
2023-10-10 10:40:55 82 1
翻译 组会论文翻译:Dropout :A Simple Way to Prevent Neural Networks fromOverfitting
深度神经网络拥有大量的参数,是非常强大的机器学习系统,但在这样的网络当中过拟合也就是Overfitting——它是一个非常严重的问题。大型神经网络运行慢,难以通过结合不同的多个网络来预测,解决过拟合问题。Dropout就是解决这个问题的一种技术,主要思想:在训练过程中,随机丢弃神经网络中的单元以及链接,这样就避免了单元之间的过度适应。在测试的时候,可以通过使用一个权重较小的、没有剪枝的网络,来近似平均所有这些剪枝网络的预测效果,从而大大的减少过拟合,优于其他的正则化方法。
2023-10-10 10:29:51 189 1
翻译 组会论文翻译:DAE-Former:用于医学图像分割的双注意引导高效transformer
Transformer能够对远程依赖关系进行建模而得到广泛关注。其核心部分的self-attention,通常会受到tokens数量的二次方计算复杂性的影响。提出了DAE-Former,重新制定了自注意机制,在保持计算效率的同时,捕获整个特征维度上的空间和通道关系。此外,重新设计skip connection路径,加入了cross attention模块,以确保特征的可重用性,增强定位能力。DAE-Former在多器官心脏和皮肤病变分割数据集上的性能优于最先进的方法,而不需要预训练权重。
2023-09-26 15:03:55 504
原创 组会论文翻译:PIDNet:受PID控制器启发的实时语义分割网络
双分支网络结构已显示出其对实时语义分割任务的效率性和有效性。然而,直接融合高分辨率的细节和低频率的背景有一个缺点即细节特征很容易被周围的背景信息所淹没。这种超调限制了现有双分支模型的分割精度的提高。在本文中,在卷积神经网络(CNN和比例积分差分(PID)控制器之间建立了联系,并揭示了双分支网络相当于比例积分(PI)控制器,它本身就存在类似的超调问题。为了缓解这个问题,提出了一个新的三分支网络结构:PIDNet,它包含三个分支,分别解析详细信息、背景信息和边界信息。
2023-09-25 14:47:21 525 1
翻译 组会论文翻译:SegNeXt:重新思考卷积注意力设计
在此设置下,本文的方法可以获得从局部到全局的多尺度上下文,实现空间和通道维度的适应性,以及从低到高的信息聚合。其中F表示输入特征。从早期的基于CNN的模型,以FCN和DeepLab系列为代表,到最近的基于Transformer的方法,以SETR和SegFormer为代表,语义分割模型在网络架构方面经历了重大变革。对于编码器中的构建块,作者采用了与 ViT类似的结构,但不同的是没有使用自注意机制,而是设计了一种新颖的多尺度卷积注意(MSCA)模块.如图2(a)所示,MSCA包含三个部分:用于聚合局部信息的。
2023-09-24 16:07:41 264 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人