组会文章
文章平均质量分 53
整理加翻译
把奶粉扬了
这个作者很懒,什么都没留下…
展开
-
组会论文翻译加思路整理:BiFormer: Vision Transformer with Bi-Level Routing Attention
如果要节省显存,加快计算速度,那么一个基本的思路就是打下计算量。原创 2023-11-08 15:46:20 · 1431 阅读 · 4 评论 -
组会文章思路整理&ppt:BiFormer: Vision Transformer with Bi-Level Routing Attention
1、文章阅读整理2、ppt整理原创 2023-11-08 14:06:16 · 214 阅读 · 2 评论 -
组会文章思路整理ppt:Summary:Deformable Convolutions
搭配视频。原创 2023-11-05 16:52:48 · 92 阅读 · 0 评论 -
组会文章思路整理ppt:No More Strided Convolutions or Pooling:A New CNN Building Block for Low-ResolutionImage
原创 2023-10-17 16:15:48 · 89 阅读 · 0 评论 -
组会论文:SPD:No More Strided Convolutions or Pooling:A New CNN Building Block for Low-ResolutionImage
原创 2023-10-17 16:12:29 · 365 阅读 · 0 评论 -
组会文章思路整理:Dropout :A Simple Way to Prevent Neural Networks fromOverfitting
原创 2023-10-10 10:40:55 · 82 阅读 · 1 评论 -
组会论文翻译:Dropout :A Simple Way to Prevent Neural Networks fromOverfitting
深度神经网络拥有大量的参数,是非常强大的机器学习系统,但在这样的网络当中过拟合也就是Overfitting——它是一个非常严重的问题。大型神经网络运行慢,难以通过结合不同的多个网络来预测,解决过拟合问题。Dropout就是解决这个问题的一种技术,主要思想:在训练过程中,随机丢弃神经网络中的单元以及链接,这样就避免了单元之间的过度适应。在测试的时候,可以通过使用一个权重较小的、没有剪枝的网络,来近似平均所有这些剪枝网络的预测效果,从而大大的减少过拟合,优于其他的正则化方法。翻译 2023-10-10 10:29:51 · 188 阅读 · 1 评论 -
组会文章思路整理:DAE-Former:用于医学图像分割的双注意引导高效transformer
1.文章整理2.细节补充原创 2023-09-26 15:35:04 · 266 阅读 · 0 评论 -
组会论文翻译:DAE-Former:用于医学图像分割的双注意引导高效transformer
Transformer能够对远程依赖关系进行建模而得到广泛关注。其核心部分的self-attention,通常会受到tokens数量的二次方计算复杂性的影响。提出了DAE-Former,重新制定了自注意机制,在保持计算效率的同时,捕获整个特征维度上的空间和通道关系。此外,重新设计skip connection路径,加入了cross attention模块,以确保特征的可重用性,增强定位能力。DAE-Former在多器官心脏和皮肤病变分割数据集上的性能优于最先进的方法,而不需要预训练权重。翻译 2023-09-26 15:03:55 · 503 阅读 · 0 评论 -
组会文章思路整理&ppt:PIDNet:受PID控制器启发的实时语义分割网络
1.文章整理2.ppt原创 2023-09-25 17:14:38 · 112 阅读 · 1 评论 -
组会论文翻译:PIDNet:受PID控制器启发的实时语义分割网络
双分支网络结构已显示出其对实时语义分割任务的效率性和有效性。然而,直接融合高分辨率的细节和低频率的背景有一个缺点即细节特征很容易被周围的背景信息所淹没。这种超调限制了现有双分支模型的分割精度的提高。在本文中,在卷积神经网络(CNN和比例积分差分(PID)控制器之间建立了联系,并揭示了双分支网络相当于比例积分(PI)控制器,它本身就存在类似的超调问题。为了缓解这个问题,提出了一个新的三分支网络结构:PIDNet,它包含三个分支,分别解析详细信息、背景信息和边界信息。原创 2023-09-25 14:47:21 · 520 阅读 · 1 评论 -
组会论文翻译:SegNeXt:重新思考卷积注意力设计
在此设置下,本文的方法可以获得从局部到全局的多尺度上下文,实现空间和通道维度的适应性,以及从低到高的信息聚合。其中F表示输入特征。从早期的基于CNN的模型,以FCN和DeepLab系列为代表,到最近的基于Transformer的方法,以SETR和SegFormer为代表,语义分割模型在网络架构方面经历了重大变革。对于编码器中的构建块,作者采用了与 ViT类似的结构,但不同的是没有使用自注意机制,而是设计了一种新颖的多尺度卷积注意(MSCA)模块.如图2(a)所示,MSCA包含三个部分:用于聚合局部信息的。翻译 2023-09-24 16:07:41 · 262 阅读 · 1 评论 -
组会文章思路整理&ppt:SegNeXt:重新思考卷积注意力设计
1.文章整理2.PPT原创 2023-09-24 16:22:19 · 84 阅读 · 1 评论