2021c++云蓝课填空第三题

该博客探讨了在平面直角坐标系中,如何通过给定的20×21个整数点来确定不同直线的数量。通过分析直线的一般式y=kx+b,利用双层循环遍历所有点组合,计算斜率k和截距b,使用map存储唯一直线参数,最终统计出不同直线的总数,得出答案为40257条。
摘要由CSDN通过智能技术生成

在平面直角坐标系中,两点可以确定一条直线。如果有多点在一条直线上, 那么这些点中任意两点确定的直线是同一条。

给定平面上 2 × 3 个整点{(x, y)|0 ≤ x < 2, 0 ≤ y < 3, x ∈ Z, y ∈ Z}(x,y)∣0≤x<2,0≤y<3,x∈Z,y∈Z​,即横坐标 是 0 到 1 (包含 0 和 1) 之间的整数、纵坐标是 0 到 2 (包含 0 和 2) 之间的整数 的点。这些点一共确定了 1 条不同的直线。

给定平面上 20 × 21 个整点 {(x, y)|0 ≤ x < 20, 0 ≤ y < 21, x ∈ Z, y ∈ Z}(x,y)∣0≤x<20,0≤y<21,x∈Z,y∈Z,即横 坐标是 0 到 19 (包含 0和 19) 之间的整数、纵坐标是 0 到 20 (包含 0 和 20​) 之 间的整数的点。

请问这些点一共确定了多少条不同的直线。

分析:首先要知道直线怎么确定,平面直线的一般式为y = kx + b,其中k称为直线斜率,b称为截距,所以直线由k和b确定,即一对kb确定一条直线。因此可以利用c++语言中的map来匹配这一对值并赋予标志值,最后统计map对象的个数即可。

核心代码:

int cnt = 0;
	for(int i = 0; i < 20; i++)
	{
		for(int j = 0; j < 21;j++)
		{
			p[cnt].x = i;
			p[cnt++].y = j;
		}
	}
	int pri = 20 + 21;
	for(int i = 0; i < cnt; i++)
	{
		for(int j = 0; j < cnt; j++)
		{
			if(p[i].x == p[j].x || p[i].y == p[j].y) continue;
			double k = (p[j].y - p[i].y)/(p[j].x - p[i].x);
			double b = (p[i].y*p[j].x-p[i].x*p[j].y)/(p[j].x - p[i].x);
			if(mp[{k, b}] == 0)
			{
				mp[{k, b}] = 1;
				pri++;
			}
		}
	}
	cout << pri << endl;

答案:40257

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值