- 博客(77)
- 收藏
- 关注
原创 采用matplotlib可视化kitti GT
配置kitti_object_vis没成功,用kitti_object_vis的一些函数加上matplotlib进行可视化。
2024-04-17 16:56:11 210
原创 SS3D翻译
对于每个保留的边界框,我们从实例库中随机选择一个边界框,并将相应的点云放置在所选边界框的中心处,如果所选边界框与断裂场景中的现有边界框不重叠。得到过滤后的预测后,我们计算 pt 和 pb 的每对边界框之间的 IoU 矩阵,旨在匹配来自不规则点云的两个预测的框。通过这种设计,我们可以修复由于之前删除点而导致的密度不均匀性,同时,更多的地面真值框也减少了在每个场景中只稀疏标注了少量实例时对网络的负面影响。这样,我们确保结果尽可能包含潜在的前景点, 这意味着原始点云的其余部分往往是可靠的背景点云。
2024-04-13 21:59:31 1103
原创 第四章:照相机模型与增强实现
假设我们已经获得了标定好的照相机,即已知标定矩阵 K,下面的函数可以将照相机参数转换为 OpenGL 中的投影矩阵。给定照相机投影矩阵 P,我们可以计算出空间上照相机的所在位置。照相机的中心C,是一个三维点,满足约束 PC=0。**纵横比例参数 α **是在像素元素非正方形的情况下使用的。为了研究照相机的移动会如何改变投影的效果,使用下面的代码。大多数参数可以使用基本的假设来设定(正方形垂直的像素,光心位于图像中心),比较难处理的是。创建一个test的Window,绘制茶壶,如上所示。
2023-09-04 09:39:25 420
原创 第三章 图像到图像的映射
点,通过将这些点进行三角剖分,然后使用仿射扭曲来扭曲每个三角形,我们可以将图像和另一幅图像的对应标记点扭曲对应。这里我们基于以下事实,扭曲的图像是在扭曲区域边界之外以 0 来填充的图像,来创建一个二值的 alpha 图像。给定一个模型,例如点集之间的单应性矩阵,RANSAC 基本的思想是,数据中包含正确的点和噪声点,合理的模型应该能够在描述正确数据点的同时摒弃噪声点。仿射扭曲的一个简单例子是,将图像或者图像的一部分放置在另一幅图像中,使得它们能够和指定的区域或者标记物对齐。这些是基本的仿射变换。
2023-09-02 20:54:09 496
原创 第二章 局部图像描述子
这些描述符还有一个问题,它们不具有尺度不变性和旋转不变性,而算法中像素块的大小也会影响对应匹配的结果。为了实现该算法,我们获取所有的候选像素点,以角点响应值递减的顺序排序,然后将距离已标记为角点位置过近的区域从候选像素点中删除。SIFT 描述子的标准设置使用 4×4 的子区域,每个子区域使用 8 个小区间的方向直方图,会产生共128 个小区间的直方图(4×4×8=128)分析:SIFT算法的实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向。,因此,它可以用于三维视角和噪声的可靠匹配。
2023-09-01 16:12:38 309
原创 第一章 基本的图像操作和处理
对于灰度图像,颜色映射是在[0, 255]范围内进行的。因此,尽管img3的像素值在[0, 80]的范围内,但。用Sobel算子绘制了计算x和y的方向导数,可以看出图“sobel x”的线会竖直一些,而图“sobel y”的线会水平一些,这是由于不同的方向导数导致的。这是个PIL的简单例子:读入图片、转灰度图、显示图片(这两张图片显然有点太大了)。这是个PIL的简单例子:读入图片、转灰度图、显示图片(这两张图片显然有点太大了)。如下实验所示,img3的范围是[0,80],但是该图仍能显示高亮的[255]
2023-08-02 10:05:16 462
原创 第十三章 利用PCA简化数据
PCA(Principal Component Analysis,主成分分析)是一种常用的技术,用于将的表示,同时保留尽可能多的数据信息。它的主要原理是通过将原始数据中,使得数据在新坐标系下的。这样,数据的主要特征就能够通过少数几个主成分来表示,从而达到降维的效果。
2023-08-01 11:15:39 291
原创 残差网络Resnet50:花卉识别
由于卷积层的堆叠,前面的信息可能在之后被丢失,造成精度下降。为了防止这种情况,将前面的层和后面的层进行叠加,防止信息丢失Resnet网络结构:以Resnet50为backbone、一个全连接层作为head,形成一个花卉检测的cnn网络结构。
2023-07-21 16:33:19 494 1
原创 手写数字识别Minst(CNN)
在PyTorch的torch.nn模块中,卷积函数Conv2d的输入张量的形状应为[batch_size, channels, height, width]对应数据集,无需修改(在一些架构中,可能是[batch_size, height, width, channels])。最后loader.shape是1875*[32*1*28*28,32],即 number*[batch(data)*height*width, batch(label)]在本数据集中,输入图不是1*32*32,是1*28*28。
2023-07-19 19:23:22 1204
原创 第七章 集成学习
在对预测输出进行结合时,Bagging 通常对分类任务使用简单投票法,对回归任务使用简单平均法.若分类预测时出现两个类收到同样票数的情形,则最简单的做法是随机选择一个,也可进一步考察学习器投票的置信度来确定最终胜者。通过此表格可以看出,当基学习器少的时候,随着学习器个数的增加,对于训练数据和测试数据,集成学习器的预测准确度都不断提高。当基学习器过多的时候,集成学习器对训练数据的预测准确度仍在提高,但是对测试数据的预测准确度不断降低,即出现了。当训练数据很多时,一种更为强大的结合策略是使用“学习法”,即。
2023-07-16 19:15:28 475
原创 第二章 模型评估和选择
根据学习器的预测结果对样例进行排序,按此顺序逐个把样本作为正例进行预测,每次计算出两个重要量的值,分别以它们为横、纵坐标作图,就得到了“ROC曲线”.与P-R曲线使用查准率、查全率为纵、横轴不同, ROC曲线的纵轴是“真正例率”(True Positive Rate,简称TPR),横轴是“假正例率”(False PositiveRate,简称FPR),基于表2.1中的符号,两者分别定义为。相应的,1 - a/m称为“另外,需注意的是,我们通常把学得模型在实际使用中遇到的数据称为测试数据,为了加以区分,
2023-07-08 20:14:05 427
原创 第五章 神经网络与手写体识别
为了解决这些问题,出现了改进的变种,如受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)和深度信念网络(Deep Belief Network,DBN),它们在Boltzmann机的基础上进行了简化和扩展。深度学习(Deep Learning)是一种机器学习方法,旨在模仿人脑的神经网络结构和工作方式来处理和学习复杂的数据。深度学习通过构建深层次的神经网络模型,利用大量的数据进行训练,并自动学习数据的特征表示和抽象层次,从而实现高效的模式识别和数据分析。
2023-07-07 11:07:03 1251
原创 第四章 基于概率论的分类方法:朴素贝叶斯
postingList为单词表,即数据集中出现的所有单词vocabList=[‘has’, ‘please’, ‘I’,…classVec,表示每个句子是否含有侮辱性,是则为1,classVec=[0, 1, 0, 1, 0, 1]可以看出,经过小数据集训练,朴素贝叶斯模型可对简单的句子可以进行正确分类。inputSet中出现的单词,单词表对应位置的向量位置标记为1。setOfWords2Vec函数,返回长度为单词表长度的向量。,如计算侮辱性的条件概率p1Vect,那么就。
2023-07-04 17:00:28 714
原创 第2章 k-近邻算法
它的⼯作原理是:存在⼀个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每⼀数据与所属分类的对应关系。输⼊没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征**最相似数据(最近邻)**的分类标签优点:精度⾼、对异常值不敏感、⽆数据输⼊假定。缺点:计算复杂度⾼、空间复杂度⾼。适⽤数据范围:数值型和标称型。
2023-07-01 19:58:37 278
原创 第一章 绪论
有趣的是,二十一世纪初,连接主义学习又卷土重来,掀起了以“深度学习”为名的热潮.所谓深度学习,狭义地说就是“很多层”的神经网络.在若干测试和竞赛上,尤其是涉及语音、图像等复杂对象的应用中,深度学习技术取得了优越性能.以往机器学习技术在应用中要取得好性能,对使用者的要求较高;二十世纪九十年代中期之前,“从样例中学习”的另一主流技术是基于神经网络的连接主义学习.连接主义学习在二十世纪五十年代取得了大发展,但因为早期的很多人工智能研究者对符号表示有特别偏爱,连接主义学习的最大局限是其“试错性”;
2023-06-24 12:28:34 551
原创 第三章 决策树
直观来说,Gini(D)反映了从数据集D中随机抽取两个样本,其类别标记不一致的概率.因此, Gini(D)越小,则数据集D的纯度越高.“信息嫡”(information entropy)是度量样本集合纯度最常用的一种指标.假定当前样本集合D中第k类样本所占的比例为。划分前,对划分前后的泛化性能进行估计:如果划分后性能不变或者性能下降,则剪枝。于是,我们在候选属性集合A中,选择那个使得划分后基尼指数最小的属性作为最优划分属性,即。的信息嫡,再考虑到不同的分支结点所包含的样本数不同,给分支结点赋予权重。
2023-06-23 16:22:26 793 1
原创 第八章 图像压缩
霍夫曼方法的第一步是通过对所考虑符号的概率进行排序并将具有最小概率的符号合并为一个符号来替代下次信源化简过程中的符号,从而创建一个简化信源系列。在基于符号或基于记号的编码中,一幅图像被表示为多幅频繁发生的子图像的一个集合,称为符号。}的集合来编码,其中,每个(x,y)对规定了图像中一个符号的位置,而记号t,是该符号或子图像在字典中的地址。给定一个非负整数n和一个正整数除数m>0后,表示为Gm(n)的n关于m的Golomb编码是商[n/m]的一元编码和n modm的二进制表示的一个合并。
2023-06-17 20:35:05 2654 2
原创 第六章 彩色图像处理
考虑一幅RGB 图像,其中每一幅红、绿、蓝图像都是一幅8比特图像,在这种条件下,可以说每个RGB彩色像素[即(R, G, B)值的三元组]有24比特的深度(3个图像平面乘以每个平面的比特数)。饱和度的取值范围从0到1,0对应于垂直轴的中心线(也就是说这条线上没有色彩,只有灰度),I=0.5时红色的饱和度为1,颜色空间中的点到I轴的距离即是其饱和度。如果一幅图像被描述为三维函数,则分层方法可以看成是放置一些平行于该图像的坐标平面的平面,然后,每个平面在相交的区域中“切割”图像函数。的邻域定义的一组坐标。
2023-06-15 10:59:13 1149
原创 第五章 图像复原与重建
退化图像:g(x,y)=h(x,y)★f(x,y)+η(x,y)g(x,y)=h(x,y)\bigstar f(x,y)+\eta(x,y)g(x,y)=h(x,y)★f(x,y)+η(x,y) 写成等价的频率域表示:G(u,v)=H(u,v)F(u,v)+N(u,v)G(u,v)=H(u,v)F(u,v)+N(u,v)G(u,v)=H(u,v)F(u,v)+N(u,v)频率特性是指傅里叶域中噪声的频率内容常见密度函数:σ1e−(z−z)2/2σ2瑞利p(z)={2b(z−a)e−(z−a)2/b,z
2023-06-12 19:00:50 1061 4
原创 第三章 灰度变换与空间滤波
文章目录3灰度变换与空间滤波3.1背景知识3.1.1灰度变换和空间滤波基础3.2一些基本的灰度变换函数3.2.1图像反转3.2.2对数变换3.2.3幂律(伽马)变换3.2.4分段线性变换函数3.3直方图处理3.3.1直方图均衡3.3.2直方图匹配(规定化)3.3.3局部直方图处理3.3.4在图像增强中使用直方图统计3.4空间滤波基础3.4.1空间滤波机理3.4.2空间相关与卷积3.4.3线性滤波的向量表示3.4.4空间滤波模板的产生3.5平滑空间滤波器3.5.1平滑线性滤波器3.5.2统计排序滤波器3.6锐
2023-05-30 20:45:49 1010
原创 第二章 数字图像基础
内插是在诸如放大、收缩、旋转和几何校正制圭务中广泛应用的本工具。最近邻内差法。我们用一个简单的例子开始讨论该话题 假设一幅大小为 500x500像素的图像要放大 1.5 倍到750x750 像素。一种简单的放大方法是创建一个假想的750x750 网格,它与原始图像有相同的间隔,然后将其收缩,使它准确地与原图像匹配。 显然,收缩后的750x 750 网格的像素间隔要小于原图像的像素间隔。为了对覆盖的每一个点赋以灰度值,我们在原图像中找最接近的像素,并把该像素的灰度赋给750x750网格中的新像素。当我们完成对
2023-05-23 11:58:00 803
原创 配置ST3D环境
由于requirements中有这么一句:spconv v1.0 (commit 8da6f96)。事情就变得不一样了,其中配置的一些环境的版本对于当下来说简直是上古级别。所幸实验室内的同学给予了我一定的帮助,最终跌跌撞撞地完成了环境的配置。python,torch,torchvision,cuda,cudnn,spconv,gcc, 总体上就配了这些,前三还好,后四有点小麻烦。
2023-04-19 23:53:32 481
原创 ST3D(未完待续)
三维物体检测中弱监督领域自适应的自训练由于不同类型的3D传感器、天气条件和地理位置等导致的不可避免的,在一个特定领域(即源领域)开发的3D检测器可能无法很好地推广到新的测试领域(即目标领域)。因此,在实际应用中,有效地适应在上训练的3D检测器到一个新的是非常需要的方法。
2023-03-07 08:42:13 584
原创 计算机网络笔记
计算机网络就是一些互联的,自治的计算机系统的集合广义观点:只要能实现远程信息处理的系统资源共享的观点:以能够相互共享资源的方式互联起来的自治计算机系统的集合目的:资源共享组成单元:分布在不同地理位置的多台独立的“自治计算机”统一规则:网络协议用户透明性观点:用户使用网络就像使用一台单一的超级计算机,无须了解网络的存在、资源的位置信息。...
2022-08-06 10:16:36 243
原创 计算机组成原理
计算机系统 = 硬件 + 软件⎨⎧C1=G1+P1C0C2=G2+P2C1=G2+P2G1+P2P1C0C3=G3+P3C2=G3+P3G2+P3P2G1+P3P2P1C0C4=G4+P4C3=G4+P4G3+P4P3G2+P4P3P2G1+P4P3P2P1C0...可知相互之间的进位没有关系这种电路称为先行进位(超前进位),即CLA部件位数较多时,实现不易,可采用4个为一组的方式带标志加法器
2022-07-12 21:21:23 1093
原创 嵌入式系统
第一段1位:表示文件类型,d表示目录文件,-表示普通文件第二段3位:表示所有者权限,分别表示:读、写、执行第三段3位g:表示所在组权限,分别表示:读、写、执行第四段3位o:表示其他用户权限,分别表示:读、写、执行修改权限-chmod 即 修改权限change mode修改文件所有者 chown即change ownerLinux文件类型常见的有:(1)普通文件:符号是 -(2)目录文件:符号是 d(3)字符设备文件:符号是c(4)块设备文件:符号是b(5)符号链接文件:符号是l字符设备、块设备
2022-06-05 20:21:24 886
原创 PAT (Advanced Level) Practice 1057 Stack
PAT (Advanced Level) Practice 1057 Stack树状数组查找中位数
2022-06-05 10:11:19 163
原创 软件工程复习
文章目录1.结构化程序设计的基本方法2.白盒测试技术的覆盖标准 P2163.软件工程三要素4.内聚耦合内聚偶然内聚逻辑内聚时间内聚通信内聚过程内聚信息内聚顺序内聚功能内聚耦合非直接耦合(Nondirect Coupling)数据耦合(Data Coupling)印记耦合(Stamp Coupling)控制耦合(Control Coupling)外部耦合(External Coupling)特征耦合公共耦合(Common Coupling)5.瀑布模型 增量模型 演化模型 并发模型 统一软件过程,螺旋模型并发
2022-05-26 19:33:32 3317
原创 概率论学习笔记
文章目录第一章随机事件和概率事件的关系和运算概率及公式条件概率独立容斥乘法全概率公式贝叶斯公式古典概型和伯努利补充第二章 随机变量及其概率分布随机变量及其分布函数常用分布二项分布(伯努利超几何分布泊松分布均匀分布指数分布正态分布标准正态分布随机变量函数分布第三章 多维随机变量及其分布二维随机变量及其分布二维连续性随机变量随机变量的独立性二维均匀分布和二维正态分布第四章第五章第六章第一章随机事件和概率事件的关系和运算$A\subset B \Rightarrow A-B=A\bar{B} =\varno
2022-05-25 17:39:57 413
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人