3.4 softmax回归

回归可以用于预测多少的问题。比如预测房屋被售出价格,或者棒球队可能获得的胜场数,又或者患者住院的天数。事实上,我们也对分类问题感兴趣:不是问“多少”,而是问“哪一个”。通常,在机器学习实践者用分类这个词来描述两个有微妙差别的问题:

  1. 如果只对样本的“硬性”类别感兴趣,即属于哪个类别;
  2. 如果希望得到“软性”类别,即得到属于每个类别的概率。

💻 参考资料:李沐《动手学深度学习-Pytorch版》📢ch3 线性神经网络
🎈 开源地址:动手学深度学习
🔊 链接至上一节:3.3 线性回归的简洁实现
🎀 此篇仅仅学习记录,更详细的内容可参考开源的书和代码以及b站上李沐老师的视频动手学深度学习在线课程

1. 分类问题

在统计学上,一种表示分类数据的简单方法:独热编码(one-hot encoding)。独热编码是一个向量,它的分量和类别一样多。类别对应的分量设置为1,其他所有分量设置为0。举个例子:如果有3个类别,分别是猫、鸡、狗,那么标签 y y y将是一个三维向量,其中 ( 1 , 0 , 0 ) (1, 0, 0) (1,0,0)对应于“猫”、 ( 0 , 1 , 0 ) (0, 1, 0) (0,1,0)对应于“鸡”、 ( 0 , 0 , 1 ) (0, 0, 1) (0,0,1)对应于“狗”:
y ∈ { ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) } . y \in \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}. y{(1,0,0),(0,1,0),(0,0,1)}.

2. 网络架构

为了估计所有可能类别的条件概率,需要一个有多个输出的模型,每个类别对应一个输出。为了解决线性模型的分类问题,需要和输出一样多的仿射函数(affine function)。每个输出对应于它自己的仿射函数。在上面的例子中,如果每个类别对应4个特征 x 1 , x 2 , x 3 , x 4 x_1,x_2,x_3,x_4 x1,x2,x3,x4。由于我们有4个特征和3个可能的输出类别。我们将需要12个标量来表示权重(带下标的 w w w),3个标量来表示偏置(带下标的 b b b)。下面为每个输入计算三个未规范化的预测(logit): o 1 o_1 o1 o 2 o_2 o2 o 3 o_3 o3
o 1 = x 1 w 11 + x 2 w 12 + x 3 w 13 + x 4 w 14 + b 1 , o 2 = x 1 w 21 + x 2 w 22 + x 3 w 23 + x 4 w 24 + b 2 , o 3 = x 1 w 31 + x 2 w 32 + x 3 w 33 + x 4 w 34 + b 3 . \begin{aligned} o_1 &= x_1 w_{11} + x_2 w_{12} + x_3 w_{13} + x_4 w_{14} + b_1,\\ o_2 &= x_1 w_{21} + x_2 w_{22} + x_3 w_{23} + x_4 w_{24} + b_2,\\ o_3 &= x_1 w_{31} + x_2 w_{32} + x_3 w_{33} + x_4 w_{34} + b_3. \end{aligned} o1o2o3=x1w11+x2w12+x3w13+x4w14+b1,=x1w21+x2w22+x3w23+x4w24+b2,=x1w31+x2w32+x3w33+x4w34+b3.

为了更简洁地表达模型,仍然使用线性代数符号。通过向量形式表达:
o = W x + b \mathbf{o} = \mathbf{W} \mathbf{x} + \mathbf{b} o=Wx+b

由此,我们已经将所有权重放到一个 3 × 4 3 \times 4 3×4 矩阵中。对于给定数据样本的特征 x \mathbf{x} x ,我们的输出是由权重与输入特征进行矩阵–向量乘法再加上偏置 b \mathbf{b} b 得到的。

3. softmax运算

现在我们将优化参数以最大化观测数据的概率。为了得到预测结果,我们将设置一个阈值,如选择具有最大概率的标签。

我们希望模型的输出 y ^ j \hat{y}_j y^j可以视为属于类 j j j的概率,然后选择具有最大输出值的类别 argmax ⁡ j y j \operatorname*{argmax}_j y_j argmaxjyj作为我们的预测。例如,如果 y ^ 1 \hat{y}_1 y^1 y ^ 2 \hat{y}_2 y^2 y ^ 3 \hat{y}_3 y^3分别为0.1、0.8和0.1,
那么我们预测的类别是2,在上面的例子中代表“鸡”。

然而我们能否将未规范化的预测 o o o直接视作我们感兴趣的输出呢?答案是否定的。
因为将线性层的输出直接视为概率时存在一些问题:

一方面,我们没有限制这些输出数字的总和为1。另一方面,根据输入的不同,它们可以为负值。这些违反了概率基本公理。 要将输出视为概率,我们必须保证在任何数据上的输出都是非负的且总和为1。此外,还需要一个训练的目标函数,来激励模型精准地估计概率。

社会科学家邓肯·卢斯于1959年在选择模型(choice model)的理论基础上发明的softmax函数正是这样做的:softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持可导的性质。为了完成这一目标,🚩🚩🚩首先对每个未规范化的预测求幂,这样可以确保输出非负。为了确保最终输出的概率值总和为1,我们再让每个求幂后的结果除以它们的总和。如下式:
y ^ = s o f t m a x ( o ) 其中 y ^ j = exp ⁡ ( o j ) ∑ k exp ⁡ ( o k ) \hat{\mathbf{y}} = \mathrm{softmax}(\mathbf{o})\quad \text{其中}\quad \hat{y}_j = \frac{\exp(o_j)}{\sum_k \exp(o_k)} y^=softmax(o)其中y^j=kexp(ok)exp(oj)

这里,对于所有的 j j j总有 0 ≤ y ^ j ≤ 1 0 \leq \hat{y}_j \leq 1 0y^j1。因此, y ^ \hat{\mathbf{y}} y^可以视为一个正确的概率分布。
softmax运算不会改变未规范化的预测 o \mathbf{o} o之间的大小次序,只会确定分配给每个类别的概率。因此,在预测过程中,我们仍然可以用下式来选择最有可能的类别。
argmax ⁡ j y ^ j = argmax ⁡ j o j . \operatorname*{argmax}_j \hat y_j = \operatorname*{argmax}_j o_j. jargmaxy^j=jargmaxoj.尽管softmax是一个非线性函数,但softmax回归的输出仍然由输入特征的仿射变换决定。因此,softmax回归是一个线性模型(linear model)。

4. 小批量样本的矢量化

为了提高计算效率并且充分利用GPU,通常会对小批量样本的数据执行矢量计算。假设我们读取了一个批量的样本 X \mathbf{X} X,其中特征维度(输入数量)为 d d d,批量大小为 n n n。此外,假设我们在输出中有 q q q个类别。那么小批量样本的特征为 X ∈ R n × d \mathbf{X} \in \mathbb{R}^{n \times d} XRn×d,权重为 W ∈ R d × q \mathbf{W} \in \mathbb{R}^{d \times q} WRd×q,偏置为 b ∈ R 1 × q \mathbf{b} \in \mathbb{R}^{1\times q} bR1×q。softmax回归的矢量计算表达式为:
O = X W + b , Y ^ = s o f t m a x ( O ) . \begin{aligned} \mathbf{O} &= \mathbf{X} \mathbf{W} + \mathbf{b}, \\ \hat{\mathbf{Y}} & = \mathrm{softmax}(\mathbf{O}). \end{aligned} OY^=XW+b,=softmax(O).

相对于一次处理一个样本,小批量样本的矢量化加快了 X 和 W \mathbf{X}和\mathbf{W} XW的矩阵-向量乘法。 由于 X \mathbf{X} X中的每一行代表一个数据样本,那么softmax运算可以按行(rowwise)执行:对于 O \mathbf{O} O的每一行,我们先对所有项进行幂运算,然后通过求和对它们进行标准化。小批量的未规范化预测 O \mathbf{O} O和输出概率 Y ^ \hat{\mathbf{Y}} Y^都是形状为 n × q n \times q n×q的矩阵。

5. 损失函数

还需要一个损失函数来度量预测的效果。将使用最大似然估计,这与在线性回归中的方法相同。

5.1 对数似然

softmax函数给出了一个向量 y ^ \hat{\mathbf{y}} y^,可以将其视为对给定任意输入 x \mathbf{x} x的每个类的条件概率。例如, y ^ 1 \hat{y}_1 y^1= P ( y = 猫 ∣ x ) P(y=\text{猫} \mid \mathbf{x}) P(y=x)。假设整个数据集 { X , Y } \{\mathbf{X}, \mathbf{Y}\} {X,Y}具有 n n n个样本,其中索引 i i i的样本由特征向量 x ( i ) \mathbf{x}^{(i)} x(i)和独热标签向量 y ( i ) \mathbf{y}^{(i)} y(i)组成。可以将估计值与实际值进行比较:
P ( Y ∣ X ) = ∏ i = 1 n P ( y ( i ) ∣ x ( i ) ) . P(\mathbf{Y} \mid \mathbf{X}) = \prod_{i=1}^n P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}). P(YX)=i=1nP(y(i)x(i)).
根据最大似然估计,最大化 P ( Y ∣ X ) P(\mathbf{Y} \mid \mathbf{X}) P(YX),相当于最小化负对数似然:
− log ⁡ P ( Y ∣ X ) = ∑ i = 1 n − log ⁡ P ( y ( i ) ∣ x ( i ) ) = ∑ i = 1 n l ( y ( i ) , y ^ ( i ) ) , -\log P(\mathbf{Y} \mid \mathbf{X}) = \sum_{i=1}^n -\log P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}) = \sum_{i=1}^n l(\mathbf{y}^{(i)}, \hat{\mathbf{y}}^{(i)}), logP(YX)=i=1nlogP(y(i)x(i))=i=1nl(y(i),y^(i)),
其中,对于任何标签 y \mathbf{y} y和模型预测 y ^ \hat{\mathbf{y}} y^,损失函数为:
l ( y , y ^ ) = − ∑ j = 1 q y j log ⁡ y ^ j . l(\mathbf{y}, \hat{\mathbf{y}}) = - \sum_{j=1}^q y_j \log \hat{y}_j. l(y,y^)=j=1qyjlogy^j.

上式中的损失函数通常被称为交叉熵损失(cross-entropy loss)。由于 y \mathbf{y} y 是一个长度为 q q q的独热编码向量,所以除了一个项以外的所有项 j j j都消失了。由于所有 y ^ j \hat{y}_j y^j都是预测的概率,所以它们的对数永远不会大于 0 0 0。因此,如果正确地预测实际标签,即如果实际标签 P ( y ∣ x ) = 1 P(\mathbf{y} \mid \mathbf{x})=1 P(yx)=1,则损失函数不能进一步最小化。
注意:这往往是不可能的。例如,数据集中可能存在标签噪声(比如某些样本可能被误标),或输入特征没有足够的信息来完美地对每一个样本分类。

5.2 softmax及其导数

利用softmax的定义,得到:
l ( y , y ^ ) = − ∑ j = 1 q y j log ⁡ exp ⁡ ( o j ) ∑ k = 1 q exp ⁡ ( o k ) = ∑ j = 1 q y j log ⁡ ∑ k = 1 q exp ⁡ ( o k ) − ∑ j = 1 q y j o j = log ⁡ ∑ k = 1 q exp ⁡ ( o k ) − ∑ j = 1 q y j o j . \begin{aligned} l(\mathbf{y}, \hat{\mathbf{y}}) &= - \sum_{j=1}^q y_j \log \frac{\exp(o_j)}{\sum_{k=1}^q \exp(o_k)} \\ &= \sum_{j=1}^q y_j \log \sum_{k=1}^q \exp(o_k) - \sum_{j=1}^q y_j o_j\\ &= \log \sum_{k=1}^q \exp(o_k) - \sum_{j=1}^q y_j o_j. \end{aligned} l(y,y^)=j=1qyjlogk=1qexp(ok)exp(oj)=j=1qyjlogk=1qexp(ok)j=1qyjoj=logk=1qexp(ok)j=1qyjoj.
考虑相对于任何未规范化的预测 o j o_j oj的导数,得到:
∂ o j l ( y , y ^ ) = exp ⁡ ( o j ) ∑ k = 1 q exp ⁡ ( o k ) − y j = s o f t m a x ( o ) j − y j . \partial_{o_j} l(\mathbf{y}, \hat{\mathbf{y}}) = \frac{\exp(o_j)}{\sum_{k=1}^q \exp(o_k)} - y_j = \mathrm{softmax}(\mathbf{o})_j - y_j. ojl(y,y^)=k=1qexp(ok)exp(oj)yj=softmax(o)jyj.

换句话说,导数是softmax模型分配的概率与实际发生的情况(由独热标签向量表示)之间的差异。 从这个意义上讲,这与在回归中看到的非常相似,其中梯度是观测值 y y y和估计值 y ^ \hat{y} y^之间的差异。

5.3 交叉熵损失

现在考虑整个结果分布的情况,即观察到的不仅仅是一个结果。对于标签 y \mathbf{y} y,可以使用与以前相同的表示形式。唯一的区别是,现在用一个概率向量表示,如 ( 0.1 , 0.2 , 0.7 ) (0.1, 0.2, 0.7) (0.1,0.2,0.7),而不是仅包含二元项的向量 ( 0 , 0 , 1 ) (0, 0, 1) (0,0,1)。使用上式来定义损失 l l l,它是所有标签分布的预期损失值。此损失称为交叉熵损失(cross-entropy loss),它是分类问题最常用的损失之一。

6. 信息论基础

信息论(information theory)涉及编码、解码、发送以及尽可能简洁地处理信息或数据。

6.1 熵

信息论的核心思想是量化数据中的信息内容。在信息论中,该数值被称为分布 P P P(entropy)。可以通过以下方程得到:
H [ P ] = ∑ j − P ( j ) log ⁡ P ( j ) . H[P] = \sum_j - P(j) \log P(j). H[P]=jP(j)logP(j).

6.2 信息量

压缩与预测有什么关系呢?想象一下,我们有一个要压缩的数据流。如果我们很容易预测下一个数据,那么这个数据就很容易压缩。为什么呢?举一个极端的例子,假如数据流中的每个数据完全相同,这会是一个非常无聊的数据流。由于它们总是相同的,我们总是知道下一个数据是什么。所以,为了传递数据流的内容,我们不必传输任何信息。也就是说,“下一个数据是xx”这个事件毫无信息量。但是,如果我们不能完全预测每一个事件,那么我们有时可能会感到"惊异"。

克劳德·香农决定用信息量(下式)来量化这种惊异程度。在观察一个事件 j j j时,并赋予它(主观)概率 P ( j ) P(j) P(j)。当我们赋予一个事件较低的概率时,我们的惊异会更大,该事件的信息量也就更大。在上式中定义的熵,是当分配的概率真正匹配数据生成过程时的信息量的期望
log ⁡ 1 P ( j ) = − log ⁡ P ( j ) \log \frac{1}{P(j)} = -\log P(j) logP(j)1=logP(j)

6.3 重新审视交叉熵

如果把熵 H ( P ) H(P) H(P)想象为“知道真实概率的人所经历的惊异程度”,那么什么是交叉熵?

交叉熵 P P P Q Q Q,记为 H ( P , Q ) H(P, Q) H(P,Q)。可以把交叉熵想象为主观概率为 Q Q Q的观察者在看到根据概率 P P P生成的数据时的预期惊异。当 P = Q P=Q P=Q时,交叉熵达到最低。在这种情况下,从 P P P Q Q Q的交叉熵是 H ( P , P ) = H ( P ) H(P, P)= H(P) H(P,P)=H(P)

简而言之,我们可以从两方面来考虑交叉熵分类目标:

(i)最大化观测数据的似然;
(ii)最小化传达标签所需的惊异。

7. 模型预测和评估

在训练softmax回归模型后,给出任何样本特征,可以预测每个输出类别的概率。通常使用预测概率最高的类别作为输出类别。如果预测与实际类别(标签)一致,则预测是正确的。在实验中,使用精度(accuracy)来评估模型的性能。精度等于正确预测数与预测总数之间的比率。

8. 引用

引用原书:

@book{zhang2019dive,
    title={Dive into Deep Learning},
    author={Aston Zhang and Zachary C. Lipton and Mu Li and Alexander J. Smola},
    note={\url{http://www.d2l.ai}},
    year={2020}
}

9. softmax回归的从零开始实现

🚩🚩🚩链接至下一节:3.5 softmax回归的从零开始实现

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值