使用深度学习框架来简洁实现softmax回归模型
💻 参考资料:李沐《动手学深度学习-Pytorch版》📢ch3线性神经网络
🎈 开源地址:动手学深度学习
🔊 链接至上一节:3.5 softmax回归的从零开始实现
🎀 此篇仅仅学习记录,更详细的内容可参考开源的书和代码以及b站上李沐老师的视频动手学深度学习在线课程。
1. softmax回归的简洁实现
1.0 导入Python包
import torch
from torch import nn
from d2l import torch as d2l
1.2 导入数据
使用Fashion-MNIST数据集,并保持批量大小为256。(如何下载可查阅Fashion-MNIST数据集)
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
1.3 初始化模型参数
softmax回归的输出层是一个全连接层。只需在Sequential
中添加一个带有10个输出的全连接层。同样,在这里Sequential
并不是必要的,但它是实现深度模型的基础。仍然以均值0和标准差0.01随机初始化权重。
# PyTorch不会隐式地调整输入的形状。因此,在线性层前定义了展平层(flatten),来调整网络输入的形状
# nn.Sequential函数用于定义一个顺序容器,包括一个展平层和一个全连接层。
# nn.Flatten用于将输入的多维张量展平为一维张量,nn.Linear用于定义全连接层。
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
# init_weights函数用于对模型的权重进行初始化。
# 该函数的输入参数是一个nn.Module对象,表示模型的一个层。
def init_weights(m):
# 如果该层是一个全连接层,则对其权重进行正态分布随机初始化。
if type(m) == nn.Linear:
# 使用nn.init.normal_函数对权重进行初始化,其中std表示正态分布的标准差。
nn.init.normal_(m.weight, std=0.01)
# 使用apply方法将init_weights函数应用到模型的每一层,从而对全连接层的权重进行初始化。
net.apply(init_weights);
计算了模型的输出,然后将此输出送入交叉熵损失。从数学上讲,这是一件完全合理的事情。然而,从计算角度来看,指数可能会造成数值稳定性问题。softmax函数
y
^
j
=
exp
(
o
j
)
∑
k
exp
(
o
k
)
\hat y_j = \frac{\exp(o_j)}{\sum_k \exp(o_k)}
y^j=∑kexp(ok)exp(oj),其中
y
^
j
\hat y_j
y^j是预测的概率分布。
o
j
o_j
oj是未规范化的预测
o
\mathbf{o}
o的第
j
j
j个元素。如果
o
k
o_k
ok中的一些数值非常大,那么
exp
(
o
k
)
\exp(o_k)
exp(ok)可能大于数据类型容许的最大数字,即上溢(overflow)。这将使分母或分子变为inf
(无穷大),最后得到的是0、inf
或nan
(不是数字)的
y
^
j
\hat y_j
y^j。在这些情况下,无法得到一个明确定义的交叉熵值。
解决这个问题的一个技巧是:
在继续softmax计算之前,先从所有 o k o_k ok中减去 max ( o k ) \max(o_k) max(ok)。这里可以看到每个 o k o_k ok按常数进行的移动不会改变softmax的返回值:
y ^ j = exp ( o j − max ( o k ) ) exp ( max ( o k ) ) ∑ k exp ( o k − max ( o k ) ) exp ( max ( o k ) ) = exp ( o j − max ( o k ) ) ∑ k exp ( o k − max ( o k ) ) . \begin{aligned} \hat y_j & = \frac{\exp(o_j - \max(o_k))\exp(\max(o_k))}{\sum_k \exp(o_k - \max(o_k))\exp(\max(o_k))} \\ & = \frac{\exp(o_j - \max(o_k))}{\sum_k \exp(o_k - \max(o_k))}. \end{aligned} y^j=∑kexp(ok−max(ok))exp(max(ok))exp(oj−max(ok))exp(max(ok))=∑kexp(ok−max(ok))exp(oj−max(ok)).
在减法和规范化步骤之后,可能有些
o
j
−
max
(
o
k
)
o_j - \max(o_k)
oj−max(ok)具有较大的负值。由于精度受限,
exp
(
o
j
−
max
(
o
k
)
)
\exp(o_j - \max(o_k))
exp(oj−max(ok))将有接近零的值,即下溢(underflow)。这些值可能会四舍五入为零,使
y
^
j
\hat y_j
y^j为零,并且使得
log
(
y
^
j
)
\log(\hat y_j)
log(y^j)的值为-inf
。反向传播几步后,可能会发现自己面对一屏幕可怕的nan
结果。
尽管我们要计算指数函数,但我们最终在计算交叉熵损失时会取它们的对数。通过将softmax和交叉熵结合在一起,可以避免反向传播过程中可能会困扰我们的数值稳定性问题。
如下面的等式所示,避免计算 exp ( o j − max ( o k ) ) \exp(o_j - \max(o_k)) exp(oj−max(ok)),而可以直接使用 o j − max ( o k ) o_j - \max(o_k) oj−max(ok),因为 log ( exp ( ⋅ ) ) \log(\exp(\cdot)) log(exp(⋅))被抵消了。
log ( y ^ j ) = log ( exp ( o j − max ( o k ) ) ∑ k exp ( o k − max ( o k ) ) ) = log ( exp ( o j − max ( o k ) ) ) − log ( ∑ k exp ( o k − max ( o k ) ) ) = o j − max ( o k ) − log ( ∑ k exp ( o k − max ( o k ) ) ) . \begin{aligned} \log{(\hat y_j)} & = \log\left( \frac{\exp(o_j - \max(o_k))}{\sum_k \exp(o_k - \max(o_k))}\right) \\ & = \log{(\exp(o_j - \max(o_k)))}-\log{\left( \sum_k \exp(o_k - \max(o_k)) \right)} \\ & = o_j - \max(o_k) -\log{\left( \sum_k \exp(o_k - \max(o_k)) \right)}. \end{aligned} log(y^j)=log(∑kexp(ok−max(ok))exp(oj−max(ok)))=log(exp(oj−max(ok)))−log(k∑exp(ok−max(ok)))=oj−max(ok)−log(k∑exp(ok−max(ok))).
loss = nn.CrossEntropyLoss(reduction='none')
1.4 优化算法
在这里,使用学习率为0.1的小批量随机梯度下降作为优化算法。
trainer = torch.optim.SGD(net.parameters(), lr=0.1)
1.5训练
接下来调用3.5节定义的训练函数来训练模型。
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
2.引用
引用原书:
@book{zhang2019dive,
title={Dive into Deep Learning},
author={Aston Zhang and Zachary C. Lipton and Mu Li and Alexander J. Smola},
note={\url{http://www.d2l.ai}},
year={2020}
}