3.6 softmax回归的简洁实现

使用深度学习框架来简洁实现softmax回归模型

💻 参考资料:李沐《动手学深度学习-Pytorch版》📢ch3线性神经网络
🎈 开源地址:动手学深度学习
🔊 链接至上一节:3.5 softmax回归的从零开始实现
🎀 此篇仅仅学习记录,更详细的内容可参考开源的书和代码以及b站上李沐老师的视频动手学深度学习在线课程

1. softmax回归的简洁实现

1.0 导入Python包

import torch
from torch import nn
from d2l import torch as d2l

1.2 导入数据

使用Fashion-MNIST数据集,并保持批量大小为256。(如何下载可查阅Fashion-MNIST数据集

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

1.3 初始化模型参数

softmax回归的输出层是一个全连接层。只需在Sequential中添加一个带有10个输出的全连接层。同样,在这里Sequential并不是必要的,但它是实现深度模型的基础。仍然以均值0和标准差0.01随机初始化权重。

# PyTorch不会隐式地调整输入的形状。因此,在线性层前定义了展平层(flatten),来调整网络输入的形状

# nn.Sequential函数用于定义一个顺序容器,包括一个展平层和一个全连接层。
# nn.Flatten用于将输入的多维张量展平为一维张量,nn.Linear用于定义全连接层。
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))

# init_weights函数用于对模型的权重进行初始化。
# 该函数的输入参数是一个nn.Module对象,表示模型的一个层。
def init_weights(m):
    
    # 如果该层是一个全连接层,则对其权重进行正态分布随机初始化。
    if type(m) == nn.Linear:
        # 使用nn.init.normal_函数对权重进行初始化,其中std表示正态分布的标准差。
        nn.init.normal_(m.weight, std=0.01)

# 使用apply方法将init_weights函数应用到模型的每一层,从而对全连接层的权重进行初始化。
net.apply(init_weights);

计算了模型的输出,然后将此输出送入交叉熵损失。从数学上讲,这是一件完全合理的事情。然而,从计算角度来看,指数可能会造成数值稳定性问题。softmax函数 y ^ j = exp ⁡ ( o j ) ∑ k exp ⁡ ( o k ) \hat y_j = \frac{\exp(o_j)}{\sum_k \exp(o_k)} y^j=kexp(ok)exp(oj),其中 y ^ j \hat y_j y^j是预测的概率分布。 o j o_j oj是未规范化的预测 o \mathbf{o} o的第 j j j个元素。如果 o k o_k ok中的一些数值非常大,那么 exp ⁡ ( o k ) \exp(o_k) exp(ok)可能大于数据类型容许的最大数字,即上溢(overflow)。这将使分母或分子变为inf(无穷大),最后得到的是0、infnan(不是数字)的 y ^ j \hat y_j y^j。在这些情况下,无法得到一个明确定义的交叉熵值。

解决这个问题的一个技巧是:

在继续softmax计算之前,先从所有 o k o_k ok中减去 max ⁡ ( o k ) \max(o_k) max(ok)。这里可以看到每个 o k o_k ok按常数进行的移动不会改变softmax的返回值:

y ^ j = exp ⁡ ( o j − max ⁡ ( o k ) ) exp ⁡ ( max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) exp ⁡ ( max ⁡ ( o k ) ) = exp ⁡ ( o j − max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) . \begin{aligned} \hat y_j & = \frac{\exp(o_j - \max(o_k))\exp(\max(o_k))}{\sum_k \exp(o_k - \max(o_k))\exp(\max(o_k))} \\ & = \frac{\exp(o_j - \max(o_k))}{\sum_k \exp(o_k - \max(o_k))}. \end{aligned} y^j=kexp(okmax(ok))exp(max(ok))exp(ojmax(ok))exp(max(ok))=kexp(okmax(ok))exp(ojmax(ok)).

在减法和规范化步骤之后,可能有些 o j − max ⁡ ( o k ) o_j - \max(o_k) ojmax(ok)具有较大的负值。由于精度受限, exp ⁡ ( o j − max ⁡ ( o k ) ) \exp(o_j - \max(o_k)) exp(ojmax(ok))将有接近零的值,即下溢(underflow)。这些值可能会四舍五入为零,使 y ^ j \hat y_j y^j为零,并且使得 log ⁡ ( y ^ j ) \log(\hat y_j) log(y^j)的值为-inf。反向传播几步后,可能会发现自己面对一屏幕可怕的nan结果。

尽管我们要计算指数函数,但我们最终在计算交叉熵损失时会取它们的对数。通过将softmax和交叉熵结合在一起,可以避免反向传播过程中可能会困扰我们的数值稳定性问题。

如下面的等式所示,避免计算 exp ⁡ ( o j − max ⁡ ( o k ) ) \exp(o_j - \max(o_k)) exp(ojmax(ok)),而可以直接使用 o j − max ⁡ ( o k ) o_j - \max(o_k) ojmax(ok),因为 log ⁡ ( exp ⁡ ( ⋅ ) ) \log(\exp(\cdot)) log(exp())被抵消了。

log ⁡ ( y ^ j ) = log ⁡ ( exp ⁡ ( o j − max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) ) = log ⁡ ( exp ⁡ ( o j − max ⁡ ( o k ) ) ) − log ⁡ ( ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) ) = o j − max ⁡ ( o k ) − log ⁡ ( ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) ) . \begin{aligned} \log{(\hat y_j)} & = \log\left( \frac{\exp(o_j - \max(o_k))}{\sum_k \exp(o_k - \max(o_k))}\right) \\ & = \log{(\exp(o_j - \max(o_k)))}-\log{\left( \sum_k \exp(o_k - \max(o_k)) \right)} \\ & = o_j - \max(o_k) -\log{\left( \sum_k \exp(o_k - \max(o_k)) \right)}. \end{aligned} log(y^j)=log(kexp(okmax(ok))exp(ojmax(ok)))=log(exp(ojmax(ok)))log(kexp(okmax(ok)))=ojmax(ok)log(kexp(okmax(ok))).

loss = nn.CrossEntropyLoss(reduction='none')

1.4 优化算法

在这里,使用学习率为0.1的小批量随机梯度下降作为优化算法

trainer = torch.optim.SGD(net.parameters(), lr=0.1)

1.5训练

接下来调用3.5节定义的训练函数来训练模型。

num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

在这里插入图片描述

2.引用

引用原书:

@book{zhang2019dive,
    title={Dive into Deep Learning},
    author={Aston Zhang and Zachary C. Lipton and Mu Li and Alexander J. Smola},
    note={\url{http://www.d2l.ai}},
    year={2020}
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值