题目重述
抽样框误差是抽样误差的一种,反映了抽取样本的随机性所造成的样本值与总体值之间的差异。
一、大白话讲解
想象你是一个果园老板,想估计今年苹果的总产量。果园有1000棵树(总体),但你的工人只随机摘了50棵树(样本)的苹果来称重。最后用这50棵树的平均产量乘以1000,来估算总产量。
问题来了:
- 抽样框误差:你的工人可能漏摘了某些区域的树(比如山坡上的树结的果少,但被忽略了),或者重复摘了同一棵树。这个“名单”本身有问题——可能漏了人或多了人。
- 随机性误差:即使名单没问题,工人恰好摘到的50棵树全是高产树(或全是低产树),纯属运气差,导致估计偏差。
抽样框误差就是“名单错误”导致的误差,而题目中说的“随机性造成的误差”实际是另一种误差(通常叫抽样误差)。但题目定义混淆了二者——抽样框误差本质是“名单问题”,不是随机性问题。
二、故事拆解:农民老王的玉米田
老王有100亩玉米地(总体),想估计亩产量。他让儿子随机选10个点(样本)各采1平方米玉米称重,再推算总产。
第一步:理想情况
儿子认真画了地图,100亩地均匀分成1000个点(抽样框完整),随机抽10个点采样。结果可能因随机性有偏差(比如抽到的点恰好肥料多),但这是抽样误差(随机性导致)。
第二步:出现抽样框误差
儿子偷懒,只用田埂边的10个点采样(因为方便)。但田埂边阳光足、肥料多,产量比田中央高!此时:
- 抽样框误差:抽样框(采样点名单)本该覆盖整块田,但实际只包含了田埂附近的点(名单不全)。
- 结果:估计值严重偏高,且偏差不是随机导致的,是“名单缺陷”导致的系统偏差。
关键点:
- 抽样框误差是“框架错误”(比如名单漏人、多人、重复),破坏随机性。
- 随机性误差是“运气错误”(即使框架完美,抽到的样本可能恰好特殊)。
题目定义错误地将抽样框误差归因于随机性,但实际它源于抽样框构建不科学。
三、知识点延伸教学
-
抽样误差类型
- 抽样框误差:因抽样框(如名单、地图)与总体不一致导致。
- 例:用电话簿抽样本,但有些人有事情在忙没有接听到你的电话→漏掉部分群体。
- 抽样误差:仅由随机性引起,即使抽样框完美也存在。
- 计算公式:SE=σnSE = \frac{\sigma}{\sqrt{n}}SE=nσ(σ\sigmaσ为总体标准差,nnn为样本量)。
- 抽样框误差:因抽样框(如名单、地图)与总体不一致导致。
-
如何减少抽样框误差
- 核查抽样框是否覆盖总体(如普查更新名单)。
- 使用多重抽样框(如电话+上门访问补漏)。
-
区分其他误差
- 非抽样误差:包括测量误差(秤不准)、无响应误差(有人不配合)。
- 抽样框误差属于非抽样误差(因可人为避免,不像随机误差必然存在)。
-
重要原则
- 抽样框应与总体一致,否则估计失效。
- 随机抽样只能减少抽样误差,无法解决抽样框误差。
总结
题目定义有误:抽样框误差实质是“名单缺陷”导致的系统偏差,而非随机性误差。实际应用中,需优先确保抽样框科学完整,再考虑随机抽样降低随机误差。
1085

被折叠的 条评论
为什么被折叠?



