JAVA练习163-翻转数位

给定32位整数num,找到最长连续1序列的长度。通过模拟方法,维护前后连续1的数量和最大长度。例如,对于num=1775(11011101111),最长连续1序列长度为8。该问题的时间复杂度为O(32),空间复杂度为O(1)。
摘要由CSDN通过智能技术生成

给定一个32位整数 num,你可以将一个数位从0变为1。请编写一个程序,找出你能够获得的最长的一串1的长度。

示例 1:
输入: num = 1775(11011101111)
输出: 8

示例 2:
输入: num = 7(0111)
输出: 4

分析:

方法:模拟

求将一个数位 0 变为 1 时获取的最长一串 1 的长度,相当于求一个 0 前后连续 1 的最大数量,那么我们可以定义三个变量,一个记录最大值,一个记录前方 1 的数量(变 1 的 0 默认在前方),一个记录后方 1 的数量,拿 1775(11011101111) 举例:

  • 11011101111        后方 1 的数量为 4,前方为 0,长度为 4,最大长度为 4
  • 11011101111        后方 1 的数量为 3,前方为 5,长度为 8,最大长度为 8
  • 110
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

什巳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值