2021-03-22

误差分解

偏差-方差

在回归中,我们最常用的评价指标为均方误差,即: M S E = 1 N ∑ i = 1 N ( y i − f ^ ( x i ) ) 2 MSE = \frac{1}{N}\sum\limits_{i=1}^{N}(y_i -\hat{ f}(x_i))^2 MSE=N1i=1N(yif^(xi))2,其中 f ^ ( x i ) \hat{ f}(x_i) f^(xi)是样本 x i x_i xi应用建立的模型 f ^ \hat{f} f^预测的结果。如果我们所用的数据是训练集上的数据,那么这个误差为训练均方误差,如果我们使用测试集的数据计算的均方误差,我们称为测试均方误差。一般而言,我们并不关心模型在训练集上的训练均方误差,我们关心的是模型面对未知的样本集,即测试集上的测试误差,我们的目标是使得我们建立的模型在测试集上的测试误差最小。那我们如何选择一个测试误差最小的模型呢?这是个棘手的问题,因为在模型建立阶段,我们是不能得到测试数据的,比如:我们在模型未上线之前是不能拿到未知且真实的测试数据来验证我们的模型的。在这种情况下,为了简便起见,一些观点认为通过训练误差最小化来选择模型也是可行的。这种观点表面看上去是可行的,但是存在一个致命的缺点,那就是:一个模型的训练均方误差最小时,不能保证测试均方误差同时也很小。对于这种想法构造的模型,一般在训练误差达到最小时,测试均方误差一般很大

通过推导有下式,将平方误差分解为预测值的方差(var)和偏差(bias),以及误差项的方差。
E ( y 0 − f ^ ( x 0 ) ) 2 = Var ⁡ ( f ^ ( x 0 ) ) + [ Bias ⁡ ( f ^ ( x 0 ) ) ] 2 + Var ⁡ ( ε ) E\left(y_{0}-\hat{f}\left(x_{0}\right)\right)^{2}=\operatorname{Var}\left(\hat{f}\left(x_{0}\right)\right)+\left[\operatorname{Bias}\left(\hat{f}\left(x_{0}\right)\right)\right]^{2}+\operatorname{Var}(\varepsilon) E(y0f^(x0))2=Var(f^(x0))+[Bias(f^(x0))]2+Var(ε)

如下图,左上的代表低方差,低偏差的模型,是我们最想要的模型结果;右上代表高方差,低偏差的模型;左下代表低方差,高偏差的模型;右下代表高方差,高偏差的模型,属于最不理想的模型。

在这里插入图片描述

通常情况下,随着模型复杂度的提高,模型的方差会提高,但是会减少模型的偏差;反之,方差降低,偏差增大。我们要找到一个方差–偏差的权衡,使得方差+偏差,即测试误差最小。

正则化和交叉验证

为了得到一个好的模型,我们可能会引入很多参数,虽然这样在训练数据上的误差见笑了,但并不能保证模型在测试集上也可以达到很好的效果,为了在测试集上也可以有好的效果,我们可以加入正则项来限制模型复杂度,也可以通过交叉验证来选择一个较好的模型。

正则化项
通常包括L1和L2正则,当我们的训练误差随着特征个数的增加而减少时,惩罚项因为特征数量的增加而增大,抑制了训练误差随着特征个数的增加而无休止地减小。

  • 岭回归(L2正则化的例子):
    在线性回归中,我们的损失函数为 J ( w ) = ∑ i = 1 N ( y i − w 0 − ∑ j = 1 p w j x i j ) 2 J(w) = \sum\limits_{i=1}^{N}(y_i-w_0-\sum\limits_{j=1}^{p}w_jx_{ij})^2 J(w)=i=1N(yiw0j=1pwjxij)2,我们在线性回归的损失函数的基础上添加对系数的约束或者惩罚,即:
    J ( w ) = ∑ i = 1 N ( y i − w 0 − ∑ j = 1 p w j x i j ) 2 + λ ∑ j = 1 p w j 2 ,      其 中 , λ ≥ 0 w ^ = ( X T X + λ I ) − 1 X T Y J(w) = \sum\limits_{i=1}^{N}(y_i-w_0-\sum\limits_{j=1}^{p}w_jx_{ij})^2 + \lambda\sum\limits_{j=1}^{p}w_j^2,\;\;其中,\lambda \ge 0\\ \hat{w} = (X^TX + \lambda I)^{-1}X^TY J(w)=i=1N(yiw0j=1pwjxij)2+λj=1pwj2,λ0w^=(XTX+λI)1XTY
    调节参数 λ \lambda λ的大小是影响压缩估计的关键, λ \lambda λ越大,惩罚的力度越大,系数则越趋近于0,反之,选择合适的 λ \lambda λ对模型精度来说十分重要。岭回归通过牺牲线性回归的无偏性降低方差,有可能使得模型整体的测试误差较小,提高模型的泛化能力。
  • Lasso回归(L1正则化的例子):
    岭回归的一个很显著的特点是:将模型的系数往零的方向压缩,但是岭回归的系数只能呢个趋于0但无法等于0,换句话说,就是无法做特征选择。能否使用压缩估计的思想做到像特征最优子集选择那样提取出重要的特征呢?答案是肯定的!我们只需要对岭回归的优化函数做小小的调整就行了,我们使用系数向量的L1范数替换岭回归中的L2范数:
    J ( w ) = ∑ i = 1 N ( y i − w 0 − ∑ j = 1 p w j x i j ) 2 + λ ∑ j = 1 p ∣ w j ∣ ,      其 中 , λ ≥ 0 J(w) = \sum\limits_{i=1}^{N}(y_i-w_0-\sum\limits_{j=1}^{p}w_jx_{ij})^2 + \lambda\sum\limits_{j=1}^{p}|w_j|,\;\;其中,\lambda \ge 0 J(w)=i=1N(yiw0j=1pwjxij)2+λj=1pwj,λ0

K折交叉验证
将训练数据分为k等分,共训练k次,在训练第i次时。将第i份作为验证集,其余k-i份作为训练集,k次训练完成后,选择k次训练的平均值作为结果。下图所示的为5折交叉验证。

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值