NoSQL数据库简介

1.1技术发展1

技术的分类。 1、解决功能性的问题: Java、Jsp、 RDBMS、Tomcat、 HTML、 Linux、 JDBC、SVN 2、解决扩展性的问题: Struts、 Spring、 SpringMVC、 Hibernate、 Mybatis 3、解决性能的问题: NoSQL. Java 线程、Hadoop、 Nginx、MQ、ElasticSearch

1.1.1 Web1.0时代

Web1.0的时代,数据访问量很有限,用一夫当关的高性能的单点服务器可以 解决大部分问题。

  

 

1.1.2 Web2.0时代

随着Web2.0的时代的到来,用户访问量大幅度提升,同时产性了大量的用户 数据。加上后来的智能移动设备的普及,所有的互联网平台都面临了巨大的性能挑战。

 

1.13. 解决CPU及内存压力

1.1.4. 解决I0压力

 

 

1.2NoSQL数据库

1.2.1 NoSQL数据库概述

NoSQL(NoSQL = Not Only SQL ),意即“"不仅仅是 SQL" , 泛指非关系型的数据库. NoSQL不依赖业务逻辑方式存储,而以简单的key-value模式存储。因此大大的增加了 数据库的扩展能力。

  • 不遵循 SQL标准。

  • 不支持 ACID。

  • 远超于 SQL的性能。

1.2.2 NoSQL适用场景

  • 对数据高并发的读写。

  • 海量数据的读写。

  • 对数据高可扩 展性的。

1.2.3 NoSQL不适用场景

  • 需要事务支持。

  • 基于 sql的结构化查询存储,处理复杂的关系需要即席查询。

    (用不着sql的和用了sql也不行的情况,请考虑用NoSql )。

1.2.4 Memcache

  • 出现的NoSql数据库。

  • 数据都在内存中,一般不持久化

  • 支持简单的key-value模式,支持类型单一

  • 一般是作为缓存数据库辅助持久化的数据库。

1.2.5 Redis

  • 几乎模盖了Memcached 的绝大部分功能。

  • 数据都在内存中,支持持久化,主要用作备份恢复。

  • 除了支持简单的key-value模式,还支持多种数据结构的存储,比如 list、set. hash、zset等。。

  • 一般是作为缓存数据库辅助持久化的数据库。

1.2.6 MongoDB

  • 高性能、开源、模式自由(schema free) 的文档型数据库

  • 数据都在内存中,如果内存不足, 把不常用的数据保存到硬盘。

  • 虽然是key-value 模式,但是对value (尤其是json)提供了丰富的查询功能。

  • 支持二进制数据及大型对象。

  • 可以根据数据的特点替代RDBMS ,成为独立的数据库。或者配合RDBUS,存储特定的数据。

这是本人在学习redis时做的一点小笔记,记录一下。redis作为非关系型数据库大多数用在存储访问量较大的数据,减轻数据库的负担,但也可以持久化当作数据库使用。

关系型数据库NoSQL数据库 什么是NoSQL 大家有没有听说过“NoSQL”呢?近年,这个词极受关注。看到“NoSQL”这个词,大家可能会误以为是“No!SQL”的缩写,并深感愤怒:“SQL怎么会没有必要了呢?”但实际上,它是“Not Only SQL”的缩写。它的意义是:适用关系型数据库的时候就使用关系型数据库,不适用的时候也没有必要非使用关系型数据库不可,可以考虑使用更加合适的数据存储。 为弥补关系型数据库的不足,各种各样的NoSQL数据库应运而生。 为了更好地了解本书所介绍的NoSQL数据库,对关系型数据库的理解是必不可少的。那么,就让我们先来看一看关系型数据库的历史、分类和特征吧。 关系型数据库简史 1969年,埃德加•弗兰克•科德(Edgar Frank Codd)发表了划时代的论文,首次提出了关系数据模型的概念。但可惜的是,刊登论文的《IBM Research Report》只是IBM公司的内部刊物,因此论文反响平平。1970年,他再次在刊物《Communication of the ACM》上发表了题为“A Relational Model of Data for Large Shared Data banks”(大型共享数据库的关系模型)的论文,终于引起了大家的关注。 科德所提出的关系数据模型的概念成为了现今关系型数据库的基础。当时的关系型数据库由于硬件性能低劣、处理速度过慢而迟迟没有得到实际应用。但之后随着硬件性能的提升,加之使用简单、性能优越等优点,关系型数据库得到了广泛的应用。 通用性及高性能 虽然本书是讲解NoSQL数据库的,但有一个重要的大前提,请大家一定不要误解。这个大前提就是“关系型数据库的性能绝对不低,它具有非常好的通用性和非常高的性能”。毫无疑问,对于绝大多数的应用来说它都是最有效的解决方案。 突出的优势 关系型数据库作为应用广泛的通用型数据库,它的突出优势主要有以下几点: 保持数据的一致性(事务处理) 由于以标准化为前提,数据更新的开销很小(相同的字段基本上都只有一处) 可以进行JOIN等复杂查询 存在很多实际成果和专业技术信息(成熟的技术) 这其中,能够保持数据的一致性是关系型数据库的最大优势。在需要严格保证数据一致性和处理完整性的情况下,用关系型数据库是肯定没有错的。但是有些情况不需要JOIN,对上述关系型数据库的优点也没有什么特别需要,这时似乎也就没有必要拘泥于关系型数据库了。 关系型数据库的不足 不擅长的处理 就像之前提到的那样,关系型数据库的性能非常高。但是它毕竟是一个通用型的数据库,并不能完全适应所有的用途。具体来说它并不擅长以下处理: 大量数据的写入处理 为有数据更新的表做索引或表结构(schema)变更 字段不固定时应用 对简单查询需要快速返回结果的处理 。。。。。。 NoSQL数据库 为了弥补关系型数据库的不足(特别是最近几年),NoSQL数据库出现了。关系型数据库应用广泛,能进行事务处理和JOIN等复杂处理。相对地,NoSQL数据库只应用在特定领域,基本上不进行复杂的处理,但它恰恰弥补了之前所列举的关系型数据库的不足之处。 易于数据的分散 如前所述,关系型数据库并不擅长大量数据的写入处理。原本关系型数据库就是以JOIN为前提的,就是说,各个数据之间存在关联是关系型数据库得名的主要原因。为了进行JOIN处理,关系型数据库不得不把数据存储在同一个服务器内,这不利于数据的分散。相反,NoSQL数据库原本就不支持JOIN处理,各个数据都是独立设计的,很容易把数据分散到多个服务器上。由于数据被分散到了多个服务器上,减少了每个服务器上的数据量,即使要进行大量数据的写入操作,处理起来也更加容易。同理,数据的读入操作当然也同样容易。 提升性能和增大规模 下面说一点题外话,如果想要使服务器能够轻松地处理更大量的数据,那么只有两个选择:一是提升性能,二是增大规模。下面我们来整理一下这两者的不同。 首先,提升性能指的就是通过提升现行服务器自身的性能来提高处理能力。这是非常简单的方法,程序方面也不需要进行变更,但需要一些费用。若要购买性能翻倍的服务器,需要花费的资金往往不只是原来的2倍,可能需要多达5到10倍。这种方法虽然简单,但是成本较高。 另一方面,增大规模指的是使用多台廉价的服务器来提高处理能力。它需要对程序进行变更,但由于使用廉价的服务器,可以控制成本。另外,以后只要依葫芦画瓢增加廉价服务器的数量就可以了。 不对大量数据进行处理的话就没有使用的必要吗? NoSQL数据库基本上来说为了“使大量数据的写入处理更加容易(让增加服务器数量更容易)”而设计的。但如果不是对大量数据进行操作的话,NoSQ
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值